BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32750899)

  • 1. Antibody Supervised Training of a Deep Learning Based Algorithm for Leukocyte Segmentation in Papillary Thyroid Carcinoma.
    Stenman S; Bychkov D; Kucukel H; Linder N; Haglund C; Arola J; Lundin J
    IEEE J Biomed Health Inform; 2021 Feb; 25(2):422-428. PubMed ID: 32750899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A machine learning model for separating epithelial and stromal regions in oral cavity squamous cell carcinomas using H&E-stained histology images: A multi-center, retrospective study.
    Wu Y; Koyuncu CF; Toro P; Corredor G; Feng Q; Buzzy C; Old M; Teknos T; Connelly ST; Jordan RC; Lang Kuhs KA; Lu C; Lewis JS; Madabhushi A
    Oral Oncol; 2022 Aug; 131():105942. PubMed ID: 35689952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated segmentation of cell membranes to evaluate HER2 status in whole slide images using a modified deep learning network.
    Khameneh FD; Razavi S; Kamasak M
    Comput Biol Med; 2019 Jul; 110():164-174. PubMed ID: 31163391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpretable deep learning model to predict the molecular classification of endometrial cancer from haematoxylin and eosin-stained whole-slide images: a combined analysis of the PORTEC randomised trials and clinical cohorts.
    Fremond S; Andani S; Barkey Wolf J; Dijkstra J; Melsbach S; Jobsen JJ; Brinkhuis M; Roothaan S; Jurgenliemk-Schulz I; Lutgens LCHW; Nout RA; van der Steen-Banasik EM; de Boer SM; Powell ME; Singh N; Mileshkin LR; Mackay HJ; Leary A; Nijman HW; Smit VTHBM; Creutzberg CL; Horeweg N; Koelzer VH; Bosse T
    Lancet Digit Health; 2023 Feb; 5(2):e71-e82. PubMed ID: 36496303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. External validation of a deep learning-based algorithm for detection of tall cells in papillary thyroid carcinoma: A multicenter study.
    Stenman S; Bétrisey S; Vainio P; Huvila J; Lundin M; Linder N; Schmitt A; Perren A; Dettmer MS; Haglund C; Arola J; Lundin J
    J Pathol Inform; 2024 Dec; 15():100366. PubMed ID: 38425542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Diagnosis of Lymphoma with Digital Pathology Images Using Deep Learning.
    Achi HE; Belousova T; Chen L; Wahed A; Wang I; Hu Z; Kanaan Z; Rios A; Nguyen AND
    Ann Clin Lab Sci; 2019 Mar; 49(2):153-160. PubMed ID: 31028058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning-based image analysis methods for brightfield-acquired multiplex immunohistochemistry images.
    Fassler DJ; Abousamra S; Gupta R; Chen C; Zhao M; Paredes D; Batool SA; Knudsen BS; Escobar-Hoyos L; Shroyer KR; Samaras D; Kurc T; Saltz J
    Diagn Pathol; 2020 Jul; 15(1):100. PubMed ID: 32723384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated diagnosis of 7 canine skin tumors using machine learning on H&E-stained whole slide images.
    Fragoso-Garcia M; Wilm F; Bertram CA; Merz S; Schmidt A; Donovan T; Fuchs-Baumgartinger A; Bartel A; Marzahl C; Diehl L; Puget C; Maier A; Aubreville M; Breininger K; Klopfleisch R
    Vet Pathol; 2023 Nov; 60(6):865-875. PubMed ID: 37515411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A CNN-based active learning framework to identify mycobacteria in digitized Ziehl-Neelsen stained human tissues.
    Yang M; Nurzynska K; Walts AE; Gertych A
    Comput Med Imaging Graph; 2020 Sep; 84():101752. PubMed ID: 32758706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples.
    Turkki R; Linder N; Kovanen PE; Pellinen T; Lundin J
    J Pathol Inform; 2016; 7():38. PubMed ID: 27688929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semantic segmentation of cerebrospinal fluid and brain volume with a convolutional neural network in pediatric hydrocephalus-transfer learning from existing algorithms.
    Grimm F; Edl F; Kerscher SR; Nieselt K; Gugel I; Schuhmann MU
    Acta Neurochir (Wien); 2020 Oct; 162(10):2463-2474. PubMed ID: 32583085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automating Ground Truth Annotations for Gland Segmentation Through Immunohistochemistry.
    Kataria T; Rajamani S; Ayubi AB; Bronner M; Jedrzkiewicz J; Knudsen BS; Elhabian SY
    Mod Pathol; 2023 Dec; 36(12):100331. PubMed ID: 37716506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A convolutional neural network algorithm for automatic segmentation of head and neck organs at risk using deep lifelong learning.
    Chan JW; Kearney V; Haaf S; Wu S; Bogdanov M; Reddick M; Dixit N; Sudhyadhom A; Chen J; Yom SS; Solberg TD
    Med Phys; 2019 May; 46(5):2204-2213. PubMed ID: 30887523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Image generation by GAN and style transfer for agar plate image segmentation.
    Andreini P; Bonechi S; Bianchini M; Mecocci A; Scarselli F
    Comput Methods Programs Biomed; 2020 Feb; 184():105268. PubMed ID: 31891902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementation and Practice of Deep Learning-Based Instance Segmentation Algorithm for Quantification of Hepatic Fibrosis at Whole Slide Level in Sprague-Dawley Rats.
    Hwang JH; Kim HJ; Park H; Lee BS; Son HY; Kim YB; Jun SY; Park JH; Lee J; Cho JW
    Toxicol Pathol; 2022 Feb; 50(2):186-196. PubMed ID: 34866512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study on the implementation of deep learning algorithms for detection of hepatic necrosis in toxicity studies.
    Hwang JH; Lim M; Han G; Park H; Kim YB; Park J; Jun SY; Lee J; Cho JW
    Toxicol Res; 2023 Jul; 39(3):399-408. PubMed ID: 37398569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated quantitative analysis of Ki-67 staining and HE images recognition and registration based on whole tissue sections in breast carcinoma.
    Feng M; Deng Y; Yang L; Jing Q; Zhang Z; Xu L; Wei X; Zhou Y; Wu D; Xiang F; Wang Y; Bao J; Bu H
    Diagn Pathol; 2020 May; 15(1):65. PubMed ID: 32471471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A machine learning algorithm for simulating immunohistochemistry: development of SOX10 virtual IHC and evaluation on primarily melanocytic neoplasms.
    Jackson CR; Sriharan A; Vaickus LJ
    Mod Pathol; 2020 Sep; 33(9):1638-1648. PubMed ID: 32238879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An investigation of the effect of fat suppression and dimensionality on the accuracy of breast MRI segmentation using U-nets.
    Fashandi H; Kuling G; Lu Y; Wu H; Martel AL
    Med Phys; 2019 Mar; 46(3):1230-1244. PubMed ID: 30609062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning can predict survival directly from histology in clear cell renal cell carcinoma.
    Wessels F; Schmitt M; Krieghoff-Henning E; Kather JN; Nientiedt M; Kriegmair MC; Worst TS; Neuberger M; Steeg M; Popovic ZV; Gaiser T; von Kalle C; Utikal JS; Fröhling S; Michel MS; Nuhn P; Brinker TJ
    PLoS One; 2022; 17(8):e0272656. PubMed ID: 35976907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.