These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32750937)

  • 1. Quantifying Spatial Activation Patterns of Motor Units in Finger Extensor Muscles.
    Jiang X; Ren H; Xu K; Ye X; Dai C; Clancy EA; Zhang YT; Chen W
    IEEE J Biomed Health Inform; 2021 Mar; 25(3):647-655. PubMed ID: 32750937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoding finger movement patterns from microscopic neural drive information based on deep learning.
    Zhao Y; Zhang X; Li X; Zhao H; Chen X; Chen X; Gao X
    Med Eng Phys; 2022 Jun; 104():103797. PubMed ID: 35641068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracting and Classifying Spatial Muscle Activation Patterns in Forearm Flexor Muscles Using High-Density Electromyogram Recordings.
    Dai C; Hu X
    Int J Neural Syst; 2019 Feb; 29(1):1850025. PubMed ID: 29954235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying forearm muscle activity during wrist and finger movements by means of multi-channel electromyography.
    Gazzoni M; Celadon N; Mastrapasqua D; Paleari M; Margaria V; Ariano P
    PLoS One; 2014; 9(10):e109943. PubMed ID: 25289669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proportional estimation of finger movements from high-density surface electromyography.
    Celadon N; Došen S; Binder I; Ariano P; Farina D
    J Neuroeng Rehabil; 2016 Aug; 13(1):73. PubMed ID: 27488270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracting extensor digitorum communis activation patterns using high-density surface electromyography.
    Hu X; Suresh NL; Xue C; Rymer WZ
    Front Physiol; 2015; 6():279. PubMed ID: 26500558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in spatial distribution of flexor digitorum superficialis muscle activity is correlated to finger's action.
    Yang DD; Hou WS; Wu XY; Zheng XL; Zheng J; Jiang YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4108-11. PubMed ID: 22255243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity patterns of extrinsic finger flexors and extensors during movements of instructed and non-instructed fingers.
    van Beek N; Stegeman DF; van den Noort JC; H E J Veeger D; Maas H
    J Electromyogr Kinesiol; 2018 Feb; 38():187-196. PubMed ID: 28279574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in motor unit behavior following isometric fatigue of the first dorsal interosseous muscle.
    McManus L; Hu X; Rymer WZ; Lowery MM; Suresh NL
    J Neurophysiol; 2015 May; 113(9):3186-96. PubMed ID: 25761952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Density Surface Electromyogram-based Biometrics for Personal Identification.
    Jiang X; Xu K; Liu X; Liu D; Dai C; Chen W
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():728-731. PubMed ID: 33018090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finger Movement Recognition via High-Density Electromyography of Intrinsic and Extrinsic Hand Muscles.
    Hu X; Song A; Wang J; Zeng H; Wei W
    Sci Data; 2022 Jun; 9(1):373. PubMed ID: 35768439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor unit activity during stereotyped finger tasks and computer mouse work.
    Søgaard K; Sjøgaard G; Finsen L; Olsen HB; Christensen H
    J Electromyogr Kinesiol; 2001 Jun; 11(3):197-206. PubMed ID: 11335150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of the motor unit action potential shape in proximal and distal muscles of the upper limb in healthy and post-stroke individuals.
    McPherson LM; Negro F; Thompson CK; Sanchez L; Heckman CJ; Dewald J; Farina D
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():335-339. PubMed ID: 28268345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multichannel Nerve Stimulation for Diverse Activation of Finger Flexors.
    Shin H; Hu X
    IEEE Trans Neural Syst Rehabil Eng; 2019 Dec; 27(12):2361-2368. PubMed ID: 31634137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single finger movements in the aging hand: changes in finger independence, muscle activation patterns and tendon displacement in older adults.
    Van Beek N; Stegeman DF; Jonkers I; de Korte CL; Veeger D; Maas H
    Exp Brain Res; 2019 May; 237(5):1141-1154. PubMed ID: 30783716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of Finger Joint Angle Based on Neural Drive Extracted from High-Density Electromyography.
    Dai C; Cao Y; Hu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4820-4823. PubMed ID: 30441425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct neural control of intrinsic and extrinsic muscles of the hand during single finger pressing.
    Dupan SSG; Stegeman DF; Maas H
    Hum Mov Sci; 2018 Jun; 59():223-233. PubMed ID: 29738941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of Population Activity in Primary Motor Cortex for Single Finger Flexion and Extension.
    Arbuckle SA; Weiler J; Kirk EA; Rice CL; Schieber M; Pruszynski JA; Ejaz N; Diedrichsen J
    J Neurosci; 2020 Nov; 40(48):9210-9223. PubMed ID: 33087474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of finger movements for the dexterous hand prosthesis control with surface electromyography.
    Al-Timemy AH; Bugmann G; Escudero J; Outram N
    IEEE J Biomed Health Inform; 2013 May; 17(3):608-18. PubMed ID: 24592463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced muscle selectivity during individuated finger movements in humans after damage to the motor cortex or corticospinal tract.
    Lang CE; Schieber MH
    J Neurophysiol; 2004 Apr; 91(4):1722-33. PubMed ID: 14668295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.