These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 32750940)
41. A clinical-radiomics model incorporating T2-weighted and diffusion-weighted magnetic resonance images predicts the existence of lymphovascular invasion / perineural invasion in patients with colorectal cancer. Zhang K; Ren Y; Xu S; Lu W; Xie S; Qu J; Wang X; Shen B; Pang P; Cai X; Sun J Med Phys; 2021 Sep; 48(9):4872-4882. PubMed ID: 34042185 [TBL] [Abstract][Full Text] [Related]
42. Development and Validation of a Combined Model for Preoperative Prediction of Lymph Node Metastasis in Peripheral Lung Adenocarcinoma. Li Q; He XQ; Fan X; Zhu CN; Lv JW; Luo TY Front Oncol; 2021; 11():675877. PubMed ID: 34109124 [TBL] [Abstract][Full Text] [Related]
43. Serum miR-126 level combined with multi- detector computed tomography in the preoperative prediction of lymph node metastasis of gastric cancer. Feng R; Lu S; Sah BK; Beeharry MK; Zhang H; Yan M; Liu B; Li C; Zhu Z Cancer Biomark; 2018; 22(4):773-780. PubMed ID: 29843221 [TBL] [Abstract][Full Text] [Related]
44. The added value of radiomics from dual-energy spectral CT derived iodine-based material decomposition images in predicting histological grade of gastric cancer. Shi C; Yu Y; Yan J; Hu C BMC Med Imaging; 2022 Oct; 22(1):173. PubMed ID: 36192686 [TBL] [Abstract][Full Text] [Related]
45. Can lymphovascular invasion be predicted by preoperative multiphasic dynamic CT in patients with advanced gastric cancer? Ma Z; Liang C; Huang Y; He L; Liang C; Chen X; Huang X; Xiong Y; Liu Z Eur Radiol; 2017 Aug; 27(8):3383-3391. PubMed ID: 27999983 [TBL] [Abstract][Full Text] [Related]
46. CT radiomics nomogram for the preoperative prediction of lymph node metastasis in gastric cancer. Wang Y; Liu W; Yu Y; Liu JJ; Xue HD; Qi YF; Lei J; Yu JC; Jin ZY Eur Radiol; 2020 Feb; 30(2):976-986. PubMed ID: 31468157 [TBL] [Abstract][Full Text] [Related]
47. Predicting Lymph Node Metastasis Using Computed Tomography Radiomics Analysis in Patients With Resectable Esophageal Squamous Cell Carcinoma. Zhao B; Zhu HT; Li XT; Shi YJ; Cao K; Sun YS J Comput Assist Tomogr; 2021 Mar-Apr 01; 45(2):323-329. PubMed ID: 33512851 [TBL] [Abstract][Full Text] [Related]
48. Machine learning-based CT texture analysis to predict HPV status in oropharyngeal squamous cell carcinoma: comparison of 2D and 3D segmentation. Ren J; Yuan Y; Qi M; Tao X Eur Radiol; 2020 Dec; 30(12):6858-6866. PubMed ID: 32591885 [TBL] [Abstract][Full Text] [Related]
49. Can peritumoral radiomics increase the efficiency of the prediction for lymph node metastasis in clinical stage T1 lung adenocarcinoma on CT? Wang X; Zhao X; Li Q; Xia W; Peng Z; Zhang R; Li Q; Jian J; Wang W; Tang Y; Liu S; Gao X Eur Radiol; 2019 Nov; 29(11):6049-6058. PubMed ID: 30887209 [TBL] [Abstract][Full Text] [Related]
50. An Intelligent Clinical Decision Support System for Preoperative Prediction of Lymph Node Metastasis in Gastric Cancer. Feng QX; Liu C; Qi L; Sun SW; Song Y; Yang G; Zhang YD; Liu XS J Am Coll Radiol; 2019 Jul; 16(7):952-960. PubMed ID: 30733162 [TBL] [Abstract][Full Text] [Related]
51. Development of a radiomics nomogram based on the 2D and 3D CT features to predict the survival of non-small cell lung cancer patients. Yang L; Yang J; Zhou X; Huang L; Zhao W; Wang T; Zhuang J; Tian J Eur Radiol; 2019 May; 29(5):2196-2206. PubMed ID: 30523451 [TBL] [Abstract][Full Text] [Related]
52. Prediction of femoral osteoporosis using machine-learning analysis with radiomics features and abdomen-pelvic CT: A retrospective single center preliminary study. Lim HK; Ha HI; Park SY; Han J PLoS One; 2021; 16(3):e0247330. PubMed ID: 33661911 [TBL] [Abstract][Full Text] [Related]
53. Feasibility of endoscopic treatment and predictors of lymph node metastasis in early gastric cancer. Chu YN; Yu YN; Jing X; Mao T; Chen YQ; Zhou XB; Song W; Zhao XZ; Tian ZB World J Gastroenterol; 2019 Sep; 25(35):5344-5355. PubMed ID: 31558878 [TBL] [Abstract][Full Text] [Related]
54. Indication for endoscopic treatment based on the risk of lymph node metastasis in patients with Siewert type II/III early gastric cancer. Pyo JH; Lee H; Min YW; Min BH; Lee JH; Kim KM; Yoo H; Ahn S; Kim JJ Gastric Cancer; 2018 Jul; 21(4):672-679. PubMed ID: 29243195 [TBL] [Abstract][Full Text] [Related]
55. Development and validation of a CT-based radiomic nomogram for preoperative prediction of early recurrence in advanced gastric cancer. Zhang W; Fang M; Dong D; Wang X; Ke X; Zhang L; Hu C; Guo L; Guan X; Zhou J; Shan X; Tian J Radiother Oncol; 2020 Apr; 145():13-20. PubMed ID: 31869677 [TBL] [Abstract][Full Text] [Related]
56. Role of radiomics in predicting lymph node metastasis in gastric cancer: a systematic review. Miccichè F; Rizzo G; Casà C; Leone M; Quero G; Boldrini L; Bulajic M; Corsi DC; Tondolo V Front Med (Lausanne); 2023; 10():1189740. PubMed ID: 37663653 [TBL] [Abstract][Full Text] [Related]
57. Indication for endoscopic treatment based on the risk of lymph node metastasis in patients with undifferentiated early gastric cancer. Liang XQ; Wang Z; Li HT; Ma G; Yu WW; Zhou HC; Liu HB Asian J Surg; 2020 Oct; 43(10):973-977. PubMed ID: 31964584 [TBL] [Abstract][Full Text] [Related]
58. An integrated segmentation and shape-based classification scheme for distinguishing adenocarcinomas from granulomas on lung CT. Alilou M; Beig N; Orooji M; Rajiah P; Velcheti V; Rakshit S; Reddy N; Yang M; Jacono F; Gilkeson RC; Linden P; Madabhushi A Med Phys; 2017 Jul; 44(7):3556-3569. PubMed ID: 28295386 [TBL] [Abstract][Full Text] [Related]
59. A comparative study to evaluate CT-based semantic and radiomic features in preoperative diagnosis of invasive pulmonary adenocarcinomas manifesting as subsolid nodules. Wu YJ; Liu YC; Liao CY; Tang EK; Wu FZ Sci Rep; 2021 Jan; 11(1):66. PubMed ID: 33462251 [TBL] [Abstract][Full Text] [Related]
60. Radiomic analysis for preoperative prediction of cervical lymph node metastasis in patients with papillary thyroid carcinoma. Lu W; Zhong L; Dong D; Fang M; Dai Q; Leng S; Zhang L; Sun W; Tian J; Zheng J; Jin Y Eur J Radiol; 2019 Sep; 118():231-238. PubMed ID: 31439247 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]