BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 32750971)

  • 1. Machine Learning Techniques for Ophthalmic Data Processing: A Review.
    Sarhan MH; Nasseri MA; Zapp D; Maier M; Lohmann CP; Navab N; Eslami A
    IEEE J Biomed Health Inform; 2020 Dec; 24(12):3338-3350. PubMed ID: 32750971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ophthalmic diagnosis using deep learning with fundus images - A critical review.
    Sengupta S; Singh A; Leopold HA; Gulati T; Lakshminarayanan V
    Artif Intell Med; 2020 Jan; 102():101758. PubMed ID: 31980096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning applications in ophthalmology.
    Rahimy E
    Curr Opin Ophthalmol; 2018 May; 29(3):254-260. PubMed ID: 29528860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unraveling the complexity of Optical Coherence Tomography image segmentation using machine and deep learning techniques: A review.
    Nawaz M; Uvaliyev A; Bibi K; Wei H; Abaxi SMD; Masood A; Shi P; Ho HP; Yuan W
    Comput Med Imaging Graph; 2023 Sep; 108():102269. PubMed ID: 37487362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Review of Machine Learning Algorithms for Retinal Cyst Segmentation on Optical Coherence Tomography.
    Wei X; Sui R
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advanced Deep Learning Architectures for Retinal Fluid Segmentation on Optical Coherence Tomography Images.
    Lin M; Bao G; Sang X; Wu Y
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Promising Artificial Intelligence-Machine Learning-Deep Learning Algorithms in Ophthalmology.
    Balyen L; Peto T
    Asia Pac J Ophthalmol (Phila); 2019; 8(3):264-272. PubMed ID: 31149787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ELEMENT: Multi-Modal Retinal Vessel Segmentation Based on a Coupled Region Growing and Machine Learning Approach.
    Rodrigues EO; Conci A; Liatsis P
    IEEE J Biomed Health Inform; 2020 Dec; 24(12):3507-3519. PubMed ID: 32750920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometric Correspondence-Based Multimodal Learning for Ophthalmic Image Analysis.
    Wang Y; Zhen L; Tan TE; Fu H; Feng Y; Wang Z; Xu X; Goh RSM; Ng Y; Calhoun C; Tan GSW; Sun JK; Liu Y; Ting DSW
    IEEE Trans Med Imaging; 2024 May; 43(5):1945-1957. PubMed ID: 38206778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography.
    Perdomo O; Rios H; Rodríguez FJ; Otálora S; Meriaudeau F; Müller H; González FA
    Comput Methods Programs Biomed; 2019 Sep; 178():181-189. PubMed ID: 31416547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A supervised joint multi-layer segmentation framework for retinal optical coherence tomography images using conditional random field.
    Chakravarty A; Sivaswamy J
    Comput Methods Programs Biomed; 2018 Oct; 165():235-250. PubMed ID: 30337078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Ensemble Learning Based Objective Grading of Macular Edema by Extracting Clinically Significant Findings from Fused Retinal Imaging Modalities.
    Hassan B; Hassan T; Li B; Ahmed R; Hassan O
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning.
    Bajwa MN; Malik MI; Siddiqui SA; Dengel A; Shafait F; Neumeier W; Ahmed S
    BMC Med Inform Decis Mak; 2019 Jul; 19(1):136. PubMed ID: 31315618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning in ophthalmology: a review.
    Grewal PS; Oloumi F; Rubin U; Tennant MTS
    Can J Ophthalmol; 2018 Aug; 53(4):309-313. PubMed ID: 30119782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated retinal health diagnosis using pyramid histogram of visual words and Fisher vector techniques.
    Koh JEW; Ng EYK; Bhandary SV; Hagiwara Y; Laude A; Acharya UR
    Comput Biol Med; 2018 Jan; 92():204-209. PubMed ID: 29227822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images.
    Son J; Shin JY; Kim HD; Jung KH; Park KH; Park SJ
    Ophthalmology; 2020 Jan; 127(1):85-94. PubMed ID: 31281057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An evidence-based approach to the routine use of optical coherence tomography.
    Ly A; Phu J; Katalinic P; Kalloniatis M
    Clin Exp Optom; 2019 May; 102(3):242-259. PubMed ID: 30560558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The region of interest localization for glaucoma analysis from retinal fundus image using deep learning.
    Mitra A; Banerjee PS; Roy S; Roy S; Setua SK
    Comput Methods Programs Biomed; 2018 Oct; 165():25-35. PubMed ID: 30337079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-Preserving Guided Retinal Image Filtering and Its Application for Optic Disk Analysis.
    Cheng J; Li Z; Gu Z; Fu H; Wong DWK; Liu J
    IEEE Trans Med Imaging; 2018 Nov; 37(11):2536-2546. PubMed ID: 29994522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disc-Aware Ensemble Network for Glaucoma Screening From Fundus Image.
    Fu H; Cheng J; Xu Y; Zhang C; Wong DWK; Liu J; Cao X
    IEEE Trans Med Imaging; 2018 Nov; 37(11):2493-2501. PubMed ID: 29994764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.