These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32751055)

  • 1. Flexible Electrocorticography Electrode Array for Epileptiform Electrical Activity Recording under Glutamate and GABA Modulation on the Primary Somatosensory Cortex of Rats.
    Li X; Song Y; Xiao G; Xie J; Dai Y; Xing Y; He E; Wang Y; Xu S; Zhang L; Yu D; Tao TH; Cai X
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32751055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PDMS-Parylene Hybrid, Flexible Micro-ECoG Electrode Array for Spatiotemporal Mapping of Epileptic Electrophysiological Activity from Multicortical Brain Regions.
    Li X; Song Y; Xiao G; He E; Xie J; Dai Y; Xing Y; Wang Y; Wang Y; Xu S; Wang M; Tao TH; Cai X
    ACS Appl Bio Mater; 2021 Nov; 4(11):8013-8022. PubMed ID: 35006782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A convex-shaped, PDMS-parylene hybrid multichannel ECoG-electrode array.
    Woo-Ram Lee ; Changkyun Im ; Chin Su Koh ; Jun-Min Kim ; Hyung-Cheul Shin ; Jong-Mo Seo
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1093-1096. PubMed ID: 29060065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Inkjet Printed Flexible Electrocorticography (ECoG) Microelectrode Array on a Thin Parylene-C Film.
    Kim Y; Alimperti S; Choi P; Noh M
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35162023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PEDOT-CNT-Coated Low-Impedance, Ultra-Flexible, and Brain-Conformable Micro-ECoG Arrays.
    Castagnola E; Maiolo L; Maggiolini E; Minotti A; Marrani M; Maita F; Pecora A; Angotzi GN; Ansaldo A; Boffini M; Fadiga L; Fortunato G; Ricci D
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):342-50. PubMed ID: 25073174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slippery Epidural ECoG Electrode for High-Performance Neural Recording and Interface.
    Alahi MEE; Liu Y; Khademi S; Nag A; Wang H; Wu T; Mukhopadhyay SC
    Biosensors (Basel); 2022 Nov; 12(11):. PubMed ID: 36421162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous recording of ECoG and intracortical neuronal activity using a flexible multichannel electrode-mesh in visual cortex.
    Toda H; Suzuki T; Sawahata H; Majima K; Kamitani Y; Hasegawa I
    Neuroimage; 2011 Jan; 54(1):203-12. PubMed ID: 20696254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A flexible implantable microelectrode array for recording electrocorticography signals from rodents.
    Chatterjee S; Sakorikar T; Bs A; Joshi RK; Sikaria A; Jayachandra M; V V; Pandya HJ
    Biomed Microdevices; 2022 Sep; 24(4):31. PubMed ID: 36138255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid PDMS-Parylene subdural multi-electrode array.
    Ochoa M; Wei P; Wolley AJ; Otto KJ; Ziaie B
    Biomed Microdevices; 2013 Jun; 15(3):437-43. PubMed ID: 23334754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping the fine structure of cortical activity with different micro-ECoG electrode array geometries.
    Wang X; Gkogkidis CA; Iljina O; Fiederer LDJ; Henle C; Mader I; Kaminsky J; Stieglitz T; Gierthmuehlen M; Ball T
    J Neural Eng; 2017 Oct; 14(5):056004. PubMed ID: 28597847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recording of Neural Activity With Modulation of Photolysis of Caged Compounds Using Microelectrode Arrays in Rats With Seizures.
    Gao F; Xiao G; Song Y; Wang M; Li Z; Zhang Y; Xu S; Xie J; Yin H; Cai X
    IEEE Trans Biomed Eng; 2019 Nov; 66(11):3080-3087. PubMed ID: 30794501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible Micropillar Electrode Arrays for In Vivo Neural Activity Recordings.
    Du M; Guan S; Gao L; Lv S; Yang S; Shi J; Wang J; Li H; Fang Y
    Small; 2019 May; 15(20):e1900582. PubMed ID: 30977967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-dependent modulation of cortical and thalamic sensory responses during spike-and-wave discharges.
    Williams MS; Lecas S; Charpier S; Mahon S
    Epilepsia; 2020 Feb; 61(2):330-341. PubMed ID: 31912497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological Detection of Cortical Neurons under Gamma-Aminobutyric Acid and Glutamate Modulation Based on Implantable Microelectrode Array Combined with Microinjection.
    Song Y; Xiao G; Li Z; Gao F; Wang M; Xu S; Cai X
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4583-4586. PubMed ID: 30441372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high-sensitive nano-modified biosensor for dynamic monitoring of glutamate and neural spike covariation from rat cortex to hippocampal sub-regions.
    Xiao G; Song Y; Zhang S; Yang L; Xu S; Zhang Y; Xu H; Gao F; Li Z; Cai X
    J Neurosci Methods; 2017 Nov; 291():122-130. PubMed ID: 28830725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intraoperative electrocorticography for physiological research in movement disorders: principles and experience in 200 cases.
    Panov F; Levin E; de Hemptinne C; Swann NC; Qasim S; Miocinovic S; Ostrem JL; Starr PA
    J Neurosurg; 2017 Jan; 126(1):122-131. PubMed ID: 26918474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New thin-film surface electrode array enables brain mapping with high spatial acuity in rodents.
    Konerding WS; Froriep UP; Kral A; Baumhoff P
    Sci Rep; 2018 Feb; 8(1):3825. PubMed ID: 29491453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioresorbable Electrode Array for Electrophysiological and Pressure Signal Recording in the Brain.
    Xu K; Li S; Dong S; Zhang S; Pan G; Wang G; Shi L; Guo W; Yu C; Luo J
    Adv Healthc Mater; 2019 Aug; 8(15):e1801649. PubMed ID: 31168937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully flexible implantable neural probes for electrophysiology recording and controlled neurochemical modulation.
    Malekoshoaraie MH; Wu B; Krahe DD; Ahmed Z; Pupa S; Jain V; Cui XT; Chamanzar M
    Microsyst Nanoeng; 2024; 10():91. PubMed ID: 38947533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term stability of intracortical recordings using perforated and arrayed Parylene sheath electrodes.
    Hara SA; Kim BJ; Kuo JT; Lee CD; Meng E; Pikov V
    J Neural Eng; 2016 Dec; 13(6):066020. PubMed ID: 27819256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.