BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

529 related articles for article (PubMed ID: 32751504)

  • 1. In-Depth Analysis Reveals Production of Circular RNAs from Non-Coding Sequences.
    Robic A; Demars J; Kühn C
    Cells; 2020 Jul; 9(8):. PubMed ID: 32751504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of pig transcriptomes suggests a global regulation mechanism enabling temporary bursts of circular RNAs.
    Robic A; Faraut T; Djebali S; Weikard R; Feve K; Maman S; Kuehn C
    RNA Biol; 2019 Sep; 16(9):1190-1204. PubMed ID: 31120323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond Back Splicing, a Still Poorly Explored World: Non-Canonical Circular RNAs.
    Robic A; Kühn C
    Genes (Basel); 2020 Sep; 11(9):. PubMed ID: 32972011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Analysis of the Circular Transcriptome in Muscle, Liver, and Testis in Three Livestock Species.
    Robic A; Cerutti C; Kühn C; Faraut T
    Front Genet; 2021; 12():665153. PubMed ID: 34040640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the biogenesis and potential functions of exonic circular RNA.
    Ragan C; Goodall GJ; Shirokikh NE; Preiss T
    Sci Rep; 2019 Feb; 9(1):2048. PubMed ID: 30765711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From the comparative study of a circRNA originating from an mammalian ATXN2L intron to understanding the genesis of intron lariat-derived circRNAs.
    Robic A; Cerutti C; Demars J; Kühn C
    Biochim Biophys Acta Gene Regul Mech; 2022 May; 1865(4):194815. PubMed ID: 35513260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SRRM4 Expands the Repertoire of Circular RNAs by Regulating Microexon Inclusion.
    Conn VM; Gabryelska M; Marri S; Stringer BW; Ormsby RJ; Penn T; Poonnoose S; Kichenadasse G; Conn SJ
    Cells; 2020 Nov; 9(11):. PubMed ID: 33207694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Canonical and Interior Circular RNAs Function as Competing Endogenous RNAs in Psoriatic Skin.
    Liu X; Frost J; Bowcock A; Zhang W
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34068434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. circMeta: a unified computational framework for genomic feature annotation and differential expression analysis of circular RNAs.
    Chen L; Wang F; Bruggeman EC; Li C; Yao B
    Bioinformatics; 2020 Jan; 36(2):539-545. PubMed ID: 31373611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanopore sequencing of brain-derived full-length circRNAs reveals circRNA-specific exon usage, intron retention and microexons.
    Rahimi K; Venø MT; Dupont DM; Kjems J
    Nat Commun; 2021 Aug; 12(1):4825. PubMed ID: 34376658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Widespread noncoding circular RNAs in plants.
    Ye CY; Chen L; Liu C; Zhu QH; Fan L
    New Phytol; 2015 Oct; 208(1):88-95. PubMed ID: 26204923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reverse complementary matches simultaneously promote both back-splicing and exon-skipping.
    Cao D
    BMC Genomics; 2021 Aug; 22(1):586. PubMed ID: 34344317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide identification of circular RNAs in peanut (Arachis hypogaea L.).
    Zhang X; Ma X; Ning L; Li Z; Zhao K; Li K; He J; Yin D
    BMC Genomics; 2019 Aug; 20(1):653. PubMed ID: 31416415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Full-length sequence assembly reveals circular RNAs with diverse non-GT/AG splicing signals in rice.
    Ye CY; Zhang X; Chu Q; Liu C; Yu Y; Jiang W; Zhu QH; Fan L; Guo L
    RNA Biol; 2017 Aug; 14(8):1055-1063. PubMed ID: 27739910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Use of circRNAs as Biomarkers of Cancer.
    Solé C; Mentxaka G; Lawrie CH
    Methods Mol Biol; 2021; 2348():307-341. PubMed ID: 34160816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rolling Circle cDNA Synthesis Uncovers Circular RNA Splice Variants.
    Das A; Rout PK; Gorospe M; Panda AC
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31426285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review on circular RNAs and new insights into their roles in cancer.
    Tang X; Ren H; Guo M; Qian J; Yang Y; Gu C
    Comput Struct Biotechnol J; 2021; 19():910-928. PubMed ID: 33598105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of circular RNAs in an ectoparasitic mite Varroa destructor (Acarina: Varroidae) of the honey bee.
    Lin Z; Xu H; Su X; Ke Y; Wang W; Li Y; Zhuang M; Chen H; Liu Y; Wang K; Chen G; Ji T
    Parasitol Res; 2021 Feb; 120(2):715-723. PubMed ID: 33452589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of potential proteins translated from circular RNA splice variants.
    Das A; Sinha T; Mishra SS; Das D; Panda AC
    Eur J Cell Biol; 2023 Mar; 102(1):151286. PubMed ID: 36645925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A view of pre-mRNA splicing from RNase R resistant RNAs.
    Suzuki H; Tsukahara T
    Int J Mol Sci; 2014 May; 15(6):9331-42. PubMed ID: 24865493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.