These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 32751505)
1. A Numerical Investigation of Enhancing Microfluidic Heterogeneous Immunoassay on Bipolar Electrodes Driven by Induced-Charge Electroosmosis in Rotating Electric Fields. Ge Z; Yan H; Liu W; Song C; Xue R; Ren Y Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32751505 [TBL] [Abstract][Full Text] [Related]
2. Simulation Analysis of Improving Microfluidic Heterogeneous Immunoassay Using Induced Charge Electroosmosis on a Floating Gate. Hu Q; Ren Y; Liu W; Tao Y; Jiang H Micromachines (Basel); 2017 Jul; 8(7):. PubMed ID: 30400403 [TBL] [Abstract][Full Text] [Related]
3. Multifrequency Induced-Charge Electroosmosis. Du K; Song J; Liu W; Tao Y; Ren Y Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31277290 [TBL] [Abstract][Full Text] [Related]
4. Particle rotational trapping on a floating electrode by rotating induced-charge electroosmosis. Ren Y; Liu W; Liu J; Tao Y; Guo Y; Jiang H Biomicrofluidics; 2016 Sep; 10(5):054103. PubMed ID: 27703589 [TBL] [Abstract][Full Text] [Related]
5. On the Bipolar DC Flow Field-Effect-Transistor for Multifunctional Sample Handing in Microfluidics: A Theoretical Analysis under the Debye⁻Huckel Limit. Liu W; Wu Q; Ren Y; Cui P; Yao B; Li Y; Hui M; Jiang T; Bai L Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393361 [TBL] [Abstract][Full Text] [Related]
6. Numerical investigation of field-effect control on hybrid electrokinetics for continuous and position-tunable nanoparticle concentration in microfluidics. Tao Y; Liu W; Song C; Ge Z; Li Z; Li Y; Ren Y Electrophoresis; 2022 Nov; 43(21-22):2074-2092. PubMed ID: 36030405 [TBL] [Abstract][Full Text] [Related]
7. A High-Throughput Electrokinetic Micromixer via AC Field-Effect Nonlinear Electroosmosis Control in 3D Electrode Configurations. Du K; Liu W; Ren Y; Jiang T; Song J; Wu Q; Tao Y Micromachines (Basel); 2018 Aug; 9(9):. PubMed ID: 30424365 [TBL] [Abstract][Full Text] [Related]
8. Electrothermal stirring for heterogeneous immunoassays. Sigurdson M; Wang D; Meinhart CD Lab Chip; 2005 Dec; 5(12):1366-73. PubMed ID: 16286967 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of Binding Kinetics on Affinity Substrates Using Asymmetric Electroosmotic Flow on a Sinusoidal Bipolar Electrode. Wu Y; Hu B; Ma X; Wang Y; Li W; Wang S Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208334 [TBL] [Abstract][Full Text] [Related]
10. On ion transport regulation with field-effect nonlinear electroosmosis control in microfluidics embedding an ion-selective medium. Liu W; Ren Y; Xue R; Song C; Wu Q Electrophoresis; 2020 Jun; 41(10-11):778-792. PubMed ID: 31943244 [TBL] [Abstract][Full Text] [Related]
11. Controllable rotating behavior of individual dielectric microrod in a rotating electric field. Liu W; Ren Y; Tao Y; Li Y; Chen X Electrophoresis; 2017 Jun; 38(11):1427-1433. PubMed ID: 28213894 [TBL] [Abstract][Full Text] [Related]
12. On AC-Field-Induced Nonlinear Electroosmosis next to the Sharp Corner-Field-Singularity of Leaky Dielectric Blocks and Its Application in on-Chip Micro-Mixing. Ren Y; Liu W; Tao Y; Hui M; Wu Q Micromachines (Basel); 2018 Feb; 9(3):. PubMed ID: 30424036 [TBL] [Abstract][Full Text] [Related]
13. Continuous-Flow Nanoparticle Trapping Driven by Hybrid Electrokinetics in Microfluidics. Liu W; Tao Y; Xue R; Song C; Wu Q; Ren Y Electrophoresis; 2021 Apr; 42(7-8):939-949. PubMed ID: 32705697 [TBL] [Abstract][Full Text] [Related]
14. Trapping and chaining self-assembly of colloidal polystyrene particles over a floating electrode by using combined induced-charge electroosmosis and attractive dipole-dipole interactions. Liu W; Shao J; Jia Y; Tao Y; Ding Y; Jiang H; Ren Y Soft Matter; 2015 Nov; 11(41):8105-12. PubMed ID: 26332897 [TBL] [Abstract][Full Text] [Related]
15. Large-Scale Single Particle and Cell Trapping based on Rotating Electric Field Induced-Charge Electroosmosis. Wu Y; Ren Y; Tao Y; Hou L; Jiang H Anal Chem; 2016 Dec; 88(23):11791-11798. PubMed ID: 27806196 [TBL] [Abstract][Full Text] [Related]
16. Model based design of a microfluidic mixer driven by induced charge electroosmosis. Harnett CK; Templeton J; Dunphy-Guzman KA; Senousy YM; Kanouff MP Lab Chip; 2008 Apr; 8(4):565-72. PubMed ID: 18369511 [TBL] [Abstract][Full Text] [Related]
17. Enhanced particle trapping performance of induced charge electroosmosis. Tao Y; Ren Y; Liu W; Wu Y; Jia Y; Lang Q; Jiang H Electrophoresis; 2016 May; 37(10):1326-36. PubMed ID: 26914414 [TBL] [Abstract][Full Text] [Related]
18. AC Electroosmosis Effect on Microfluidic Heterogeneous Immunoassay Efficiency. Selmi M; Belmabrouk H Micromachines (Basel); 2020 Mar; 11(4):. PubMed ID: 32218325 [TBL] [Abstract][Full Text] [Related]
19. Electrokinetic particle translocation through a nanopore containing a floating electrode. Zhang M; Ai Y; Sharma A; Joo SW; Kim DS; Qian S Electrophoresis; 2011 Jul; 32(14):1864-74. PubMed ID: 21710551 [TBL] [Abstract][Full Text] [Related]
20. On hybrid electroosmotic kinetics for field-effect-reconfigurable nanoparticle trapping in a four-terminal spiral microelectrode array. Ren Y; Song C; Liu W; Jiang T; Song J; Wu Q; Jiang H Electrophoresis; 2019 Mar; 40(6):979-992. PubMed ID: 30256428 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]