BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32751541)

  • 1. Novel Polydimethylsiloxane (PDMS) Pulsatile Vascular Tissue Phantoms for the In-Vitro Investigation of Light Tissue Interaction in Photoplethysmography.
    Nomoni M; May JM; Kyriacou PA
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabricating Novel PDMS Vessels for Phantoms in Photoplethysmography Investigations.
    Nomoni M; May JM; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4458-4461. PubMed ID: 33018984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Pulsatile Optical Tissue Phantom for the Investigation of Light-Tissue Interaction in Reflectance Photoplethysmography.
    Nomoni M; May JM; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3204-3207. PubMed ID: 31946569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Contact Pressure in Reflectance Photoplethysmography in an In Vitro Tissue-Vessel Phantom.
    May JM; Mejía-Mejía E; Nomoni M; Budidha K; Choi C; Kyriacou PA
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of a noninvasive optical photoplethysmography imaging device with dynamic tissue phantom models.
    Nwafor CI; Plant KD; King DR; McCall BP; Squiers JJ; Fan W; DiMaio JM; Thatcher JE
    J Biomed Opt; 2017 Sep; 22(9):1-9. PubMed ID: 28895317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Customisable Silicone Vessels and Tissue Phantoms for In Vitro Photoplethysmography Investigations into Cardiovascular Disease.
    Karimpour P; Ferizoli R; May JM; Kyriacou PA
    Sensors (Basel); 2024 Mar; 24(5):. PubMed ID: 38475217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and characterization of viscoelastic polydimethylsiloxane phantoms for simulating arterial wall motion.
    Kim JH; Chhai P; Rhee K
    Med Eng Phys; 2021 May; 91():12-18. PubMed ID: 34074461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical Testing of Artificial Vessels and Tissues for Photoplethysmography Phantoms.
    May JM; Nomoni M; Budidha K; Choi C; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():629-632. PubMed ID: 36086013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiwavelength tissue-mimicking phantoms with tunable vessel pulsation.
    Jenne S; Zappe H
    J Biomed Opt; 2023 Apr; 28(4):045003. PubMed ID: 37077500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo Analysis of Optical Interactions in Reflectance and Transmittance Finger Photoplethysmography.
    Chatterjee S; Kyriacou PA
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30769957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully integrated photoacoustic microscopy and photoplethysmography of human
    Ahn J; Baik JW; Kim Y; Choi K; Park J; Kim H; Kim JY; Kim HH; Nam SH; Kim C
    Photoacoustics; 2022 Sep; 27():100374. PubMed ID: 35646590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polydimethylsiloxane tissue-mimicking phantoms with tunable optical properties.
    Goldfain AM; Lemaillet P; Allen DW; Briggman KA; Hwang J
    J Biomed Opt; 2021 Nov; 27(7):. PubMed ID: 34796707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-Vitro Investigation of Flow Profiles in Arteries Using the Photoplethysmograph.
    Pilt K; May JM; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7211-7214. PubMed ID: 34892763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison between Speckle Plethysmography and Photoplethysmography during Cold Pressor Test Referenced to Finger Arterial Pressure.
    Herranz Olazabal J; Lorato I; Kling J; Verhoeven M; Wieringa F; Van Hoof C; Verkruijsse W; Hermeling E
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the origin of photoplethysmography using a multiwavelength Monte Carlo model.
    Chatterjee S; Budidha K; Kyriacou PA
    Physiol Meas; 2020 Sep; 41(8):084001. PubMed ID: 32585642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo investigation of ear canal pulse oximetry during hypothermia.
    Budidha K; Kyriacou PA
    J Clin Monit Comput; 2018 Feb; 32(1):97-107. PubMed ID: 28130679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoplethysmography and its application in clinical physiological measurement.
    Allen J
    Physiol Meas; 2007 Mar; 28(3):R1-39. PubMed ID: 17322588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red Blood Cells' Area Deformation as the Origin of the Photoplethysmography Signal.
    Evdochim L; Chiriac E; Avram M; Dobrescu L; Dobrescu D; Stanciu S; Halichidis S
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arterial stiffness assessment using PPG feature extraction and significance testing in an in vitro cardiovascular system.
    Ferizoli R; Karimpour P; May JM; Kyriacou PA
    Sci Rep; 2024 Jan; 14(1):2024. PubMed ID: 38263412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoplethysmography for an independent measure of pulsatile pressure under controlled flow conditions.
    Njoum H; Kyriacou PA
    Physiol Meas; 2017 Feb; 38(2):87-100. PubMed ID: 28033109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.