These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 32751631)

  • 41. Pushing the Limit of Nitro Groups on a Pyrazole Ring with Energy-Stability Balance.
    Singh J; Staples RJ; Shreeve JM
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61357-61364. PubMed ID: 34920662
    [TBL] [Abstract][Full Text] [Related]  

  • 42. New method for calculating densities of nitroaromatic explosive compounds.
    Keshavarz MH
    J Hazard Mater; 2007 Jun; 145(1-2):263-9. PubMed ID: 17174024
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Theoretical studies on a new high energy density compound 6-amino-7-nitropyrazino[2,3-e][1,2,3,4]tetrazine 1,3,5-trioxide (ANPTTO).
    Wang T; Zheng C; Yang J; Zhang X; Gong X; Xia M
    J Mol Model; 2014 Jun; 20(6):2261. PubMed ID: 24859447
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prediction of detonation performance of CHNO and CHNOAl explosives through molecular structure.
    Keshavarz MH
    J Hazard Mater; 2009 Jul; 166(2-3):1296-301. PubMed ID: 19157709
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Energetic Derivatives of 8-Nitropyrazolo[1,5-
    Ma J; Tang Y; Cheng G; Imler GH; Parrish DA; Shreeve JM
    Org Lett; 2020 Feb; 22(4):1321-1325. PubMed ID: 31999134
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Preparation and thermal studies on tetranitrodibenzo tetraazapentalene (TACOT): a thermally stable high explosive.
    Nair UR; Gore GM; Sivabalan R; Pawar SJ; Asthana SN; Venugopalan S
    J Hazard Mater; 2007 May; 143(1-2):500-5. PubMed ID: 17098361
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Using molecular structure for reliable predicting enthalpy of melting of nitroaromatic energetic compounds.
    Semnani A; Keshavarz MH
    J Hazard Mater; 2010 Jun; 178(1-3):264-72. PubMed ID: 20117881
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A theoretical investigation on the structures, densities, detonation properties and pyrolysis mechanism of the nitro derivatives of toluenes.
    Wang G; Gong X; Liu Y; Du H; Xu X; Xiao H
    J Hazard Mater; 2010 May; 177(1-3):703-10. PubMed ID: 20064687
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Boosting the Energetic Performance of Trinitromethyl-1,2,4-oxadiazole Moiety by Increasing Nitrogen-Oxygen in the Bridge.
    Chen P; Dou H; He C; Pang S
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077400
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Theoretical study on benzoheterocycle based energetic materials, effect of heterocyclic-fused, conjugation, hydrogen bond, and substitutional group on the detonation performance.
    Shen C; Wang P; Lu M
    J Mol Model; 2018 Jan; 24(1):40. PubMed ID: 29327141
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparative Study of Various Pyrazole-based Anions: A Promising Family of Ionic Derivatives as Insensitive Energetic Materials.
    Yin P; Mitchell LA; Parrish DA; Shreeve JM
    Chem Asian J; 2017 Feb; 12(3):378-384. PubMed ID: 28042911
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Energetic Di- and Trinitromethylpyridines: Synthesis and Characterization.
    Zhang Y; Sun X; Yu S; Bao L; Sun C; Pang S
    Molecules; 2017 Dec; 23(1):. PubMed ID: 29267228
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Novel method for predicting densities of polynitro arene and polynitro heteroarene explosives in order to evaluate their detonation performance.
    Keshavarz MH
    J Hazard Mater; 2009 Jun; 165(1-3):579-88. PubMed ID: 19059710
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 3,6-Dinitropyrazolo[4,3-c]pyrazole-Based Multipurpose Energetic Materials through Versatile N-Functionalization Strategies.
    Yin P; Zhang J; Mitchell LA; Parrish DA; Shreeve JM
    Angew Chem Int Ed Engl; 2016 Oct; 55(41):12895-7. PubMed ID: 27628023
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesis of withasomnines and their non-natural analogues from aldehydes and 4-nitro-1-butanol in three steps.
    Verma D; Kumar R; Namboothiri IN
    J Org Chem; 2013 Apr; 78(7):3482-6. PubMed ID: 23438044
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthesis, characterization and evaluation of 1,2-bis(2,4,6-trinitrophenyl) hydrazine: a key precursor for the synthesis of high performance energetic materials.
    Badgujar DM; Talawar MB; Harlapur SF; Asthana SN; Mahulikar PP
    J Hazard Mater; 2009 Dec; 172(1):276-9. PubMed ID: 19665292
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Approximate prediction of melting point of nitramines, nitrate esters, nitrate salts and nitroaliphatics energetic compounds.
    Keshavarz MH
    J Hazard Mater; 2006 Dec; 138(3):448-51. PubMed ID: 16839681
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A new approach to predict the condensed phase heat of formation in acyclic and cyclic nitramines, nitrate esters and nitroaliphatic energetic compounds.
    Keshavarz MH; Sadeghi H
    J Hazard Mater; 2009 Nov; 171(1-3):140-6. PubMed ID: 19556059
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CL-20-Based Cocrystal Energetic Materials: Simulation, Preparation and Performance.
    Pang WQ; Wang K; Zhang W; Luca LT; Fan XZ; Li JQ
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32962224
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Prediction of shock sensitivity of explosives based on small-scale gap test.
    Keshavarz MH; Motamedoshariati H; Pouretedal HR; Tehrani MK; Semnani A
    J Hazard Mater; 2007 Jun; 145(1-2):109-12. PubMed ID: 17150305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.