These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 32751686)

  • 1. Path Planner for Autonomous Exploration of Underground Mines by Aerial Vehicles.
    Rubio-Sierra C; Domínguez D; Gonzalo J; Escapa A
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Global Path Planner for Safe Navigation of Autonomous Vehicles in Uncertain Environments.
    Alharbi M; Karimi HA
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33120994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal Frontier-Based Autonomous Exploration in Unconstructed Environment Using RGB-D Sensor.
    Lu L; Redondo C; Campoy P
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33202569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust Localization for Underground Mining Vehicles: An Application in a Room and Pillar Mine.
    Inostroza F; Parra-Tsunekawa I; Ruiz-Del-Solar J
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research on obstacle avoidance optimization and path planning of autonomous vehicles based on attention mechanism combined with multimodal information decision-making thoughts of robots.
    Wu X; Wang G; Shen N
    Front Neurorobot; 2023; 17():1269447. PubMed ID: 37811356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Informative Path Planning via Normalized Utility in Unknown Environments Exploration.
    Yu T; Deng B; Gui J; Zhu X; Yao W
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GNSS/LiDAR-Based Navigation of an Aerial Robot in Sparse Forests.
    Chiella ACB; Machado HN; Teixeira BOS; Pereira GAS
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31547079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Heading Weight Function: A Novel LiDAR-Based Local Planner for Nonholonomic Mobile Robots.
    Harik EHC; Korsaeth A
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31430970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel Sensor-Space Lattice Planner for Real-Time Obstacle Avoidance.
    Martinez Rocamora B; Pereira GAS
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time map building and navigation for autonomous robots in unknown environments.
    Oriolo G; Ulivi G; Vendittelli M
    IEEE Trans Syst Man Cybern B Cybern; 1998; 28(3):316-33. PubMed ID: 18255950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning-Based Complete Coverage Path Planning With Re-Joint and Obstacle Fusion Paradigm.
    Lei T; Luo C; Jan GE; Bi Z
    Front Robot AI; 2022; 9():843816. PubMed ID: 35391941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autonomous 3D Exploration of Large Structures Using an UAV Equipped with a 2D LIDAR.
    Faria M; Ferreira AS; Pérez-Leon H; Maza I; Viguria A
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31717255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Study on Dynamic Motion Planning for Autonomous Vehicles Based on Nonlinear Vehicle Model.
    Tang X; Li B; Du H
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36617040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Hybrid Path-Planning Strategy for Mobile Robots with Limited Sensor Capabilities.
    de Oliveira GCR; de Carvalho KB; Brandão AS
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30823677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An autonomous mobile robot path planning strategy using an enhanced slime mold algorithm.
    Zheng L; Hong C; Song H; Chen R
    Front Neurorobot; 2023; 17():1270860. PubMed ID: 37915952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research and Implementation of Autonomous Navigation for Mobile Robots Based on SLAM Algorithm under ROS.
    Zhao J; Liu S; Li J
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guidance for Autonomous Underwater Vehicles in Confined Semistructured Environments.
    Milosevic Z; Fernandez RAS; Dominguez S; Rossi C
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33348753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Generalized Laser Simulator Algorithm for Mobile Robot Path Planning with Obstacle Avoidance.
    Muhammad A; Ali MAH; Turaev S; Abdulghafor R; Shanono IH; Alzaid Z; Alruban A; Alabdan R; Dutta AK; Almotairi S
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autonomous Exploration of Unknown Indoor Environments for High-Quality Mapping Using Feature-Based RGB-D SLAM.
    Eldemiry A; Zou Y; Li Y; Wen CY; Chen W
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autonomous Navigation System of Greenhouse Mobile Robot Based on 3D Lidar and 2D Lidar SLAM.
    Jiang S; Wang S; Yi Z; Zhang M; Lv X
    Front Plant Sci; 2022; 13():815218. PubMed ID: 35360319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.