BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

591 related articles for article (PubMed ID: 32751847)

  • 41. A 30% Volumetric Muscle Loss Does Not Result in Sustained Functional Deficits after a 90-Day Recovery in Rats.
    Vega-Soto EE; Rodriguez BL; Armstrong RE; Larkin LM
    Regen Eng Transl Med; 2020 Mar; 6(1):62-68. PubMed ID: 32258383
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optimized Biomanufacturing for Treatment of Volumetric Muscle Loss Enables Physiomimetic Recovery.
    Bour RK; Garner GT; Peirce SM; Christ GJ
    Tissue Eng Part A; 2024 Jun; ():. PubMed ID: 38832858
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biomimetic Scaffolds in Skeletal Muscle Regeneration.
    Mulbauer GD; Matthew HWT
    Discoveries (Craiova); 2019 Mar; 7(1):e90. PubMed ID: 32309608
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional Skeletal Muscle Regeneration with Thermally Drawn Porous Fibers and Reprogrammed Muscle Progenitors for Volumetric Muscle Injury.
    Jin Y; Shahriari D; Jeon EJ; Park S; Choi YS; Back J; Lee H; Anikeeva P; Cho SW
    Adv Mater; 2021 Apr; 33(14):e2007946. PubMed ID: 33605006
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Glass-activated regeneration of volumetric muscle loss.
    Jia W; Hu H; Li A; Deng H; Hogue CL; Mauro JC; Zhang C; Fu Q
    Acta Biomater; 2020 Feb; 103():306-317. PubMed ID: 31830584
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Porcine Urinary Bladder Matrix Does Not Recapitulate the Spatiotemporal Macrophage Response of Muscle Regeneration after Volumetric Muscle Loss Injury.
    Aurora A; Corona BT; Walters TJ
    Cells Tissues Organs; 2016; 202(3-4):189-201. PubMed ID: 27825152
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Restricted physical activity after volumetric muscle loss alters whole-body and local muscle metabolism.
    Raymond-Pope CJ; Basten AM; Bruzina AS; McFaline-Figueroa J; Lillquist TJ; Call JA; Greising SM
    J Physiol; 2023 Feb; 601(4):743-761. PubMed ID: 36536512
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recovery from volumetric muscle loss injury: A comparison between young and aged rats.
    Kim JT; Kasukonis BM; Brown LA; Washington TA; Wolchok JC
    Exp Gerontol; 2016 Oct; 83():37-46. PubMed ID: 27435497
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Repairing Volumetric Muscle Loss with Commercially Available Hydrogels in an Ovine Model.
    Su EY; Kennedy CS; Vega-Soto EE; Pallas BD; Lukpat SN; Hwang DH; Bosek DW; Forester CE; Loebel C; Larkin LM
    Tissue Eng Part A; 2024 May; 30(9-10):440-453. PubMed ID: 38117140
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pre-Clinical Cell Therapeutic Approaches for Repair of Volumetric Muscle Loss.
    Shayan M; Huang NF
    Bioengineering (Basel); 2020 Aug; 7(3):. PubMed ID: 32825213
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pathophysiology of Volumetric Muscle Loss Injury.
    Corona BT; Wenke JC; Ward CL
    Cells Tissues Organs; 2016; 202(3-4):180-188. PubMed ID: 27825160
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A coupled framework of in situ and in silico analysis reveals the role of lateral force transmission in force production in volumetric muscle loss injuries.
    Westman AM; Dyer SE; Remer JD; Hu X; Christ GJ; Blemker SS
    J Biomech; 2019 Mar; 85():118-125. PubMed ID: 30718065
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cell-Derived Extracellular Matrix Fiber Scaffolds Improve Recovery from Volumetric Muscle Loss.
    Reed C; Huynh T; Schluns J; Phelps P; Hestekin J; Wolchok JC
    Tissue Eng Part A; 2024 Mar; 30(5-6):181-191. PubMed ID: 37658842
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biomaterial-Based Regenerative Strategies for Volumetric Muscle Loss: Challenges and Solutions.
    Cai CW; Grey JA; Hubmacher D; Han WM
    Adv Wound Care (New Rochelle); 2024 May; ():. PubMed ID: 38775429
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Decellularized Tissue for Muscle Regeneration.
    Urciuolo A; De Coppi P
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30110909
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Advances in electrospinning and 3D bioprinting strategies to enhance functional regeneration of skeletal muscle tissue.
    Thangadurai M; Ajith A; Budharaju H; Sethuraman S; Sundaramurthi D
    Biomater Adv; 2022 Nov; 142():213135. PubMed ID: 36215745
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bioengineered constructs combined with exercise enhance stem cell-mediated treatment of volumetric muscle loss.
    Quarta M; Cromie M; Chacon R; Blonigan J; Garcia V; Akimenko I; Hamer M; Paine P; Stok M; Shrager JB; Rando TA
    Nat Commun; 2017 Jun; 8():15613. PubMed ID: 28631758
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pre-innervated tissue-engineered muscle promotes a pro-regenerative microenvironment following volumetric muscle loss.
    Das S; Browne KD; Laimo FA; Maggiore JC; Hilman MC; Kaisaier H; Aguilar CA; Ali ZS; Mourkioti F; Cullen DK
    Commun Biol; 2020 Jun; 3(1):330. PubMed ID: 32587337
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Decellularised skeletal muscles allow functional muscle regeneration by promoting host cell migration.
    Urciuolo A; Urbani L; Perin S; Maghsoudlou P; Scottoni F; Gjinovci A; Collins-Hooper H; Loukogeorgakis S; Tyraskis A; Torelli S; Germinario E; Fallas MEA; Julia-Vilella C; Eaton S; Blaauw B; Patel K; De Coppi P
    Sci Rep; 2018 May; 8(1):8398. PubMed ID: 29849047
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A porous collagen-GAG scaffold promotes muscle regeneration following volumetric muscle loss injury.
    Panayi AC; Smit L; Hays N; Udeh K; Endo Y; Li B; Sakthivel D; Tamayol A; Neppl RL; Orgill DP; Nuutila K; Sinha I
    Wound Repair Regen; 2020 Jan; 28(1):61-74. PubMed ID: 31603580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.