These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32751855)

  • 1. Deep Transfer Learning for Time Series Data Based on Sensor Modality Classification.
    Li F; Shirahama K; Nisar MA; Huang X; Grzegorzek M
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. w-HAR: An Activity Recognition Dataset and Framework Using Low-Power Wearable Devices.
    Bhat G; Tran N; Shill H; Ogras UY
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network.
    Steven Eyobu O; Han DS
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Empirical Study and Improvement on Deep Transfer Learning for Human Activity Recognition.
    Ding R; Li X; Nie L; Li J; Si X; Chu D; Liu G; Zhan D
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30586875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Personalized Human Activity Recognition Based on Integrated Wearable Sensor and Transfer Learning.
    Fu Z; He X; Wang E; Huo J; Huang J; Wu D
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33525538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of deep neural network-based human activity recognition for a wearable device.
    Suwannarat K; Kurdthongmee W
    Heliyon; 2021 Aug; 7(8):e07797. PubMed ID: 34485724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A general framework for sensor-based human activity recognition.
    Köping L; Shirahama K; Grzegorzek M
    Comput Biol Med; 2018 Apr; 95():248-260. PubMed ID: 29361267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep SE-BiLSTM with IFPOA Fine-Tuning for Human Activity Recognition Using Mobile and Wearable Sensors.
    Jameer S; Syed H
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Robust Deep Learning Approach for Position-Independent Smartphone-Based Human Activity Recognition.
    Almaslukh B; Artoli AM; Al-Muhtadi J
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30388855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning in Human Activity Recognition with Wearable Sensors: A Review on Advances.
    Zhang S; Li Y; Zhang S; Shahabi F; Xia S; Deng Y; Alshurafa N
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comparative Study of Feature Selection Approaches for Human Activity Recognition Using Multimodal Sensory Data.
    Amjad F; Khan MH; Nisar MA; Farid MS; Grzegorzek M
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33805368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Hierarchical Multitask Learning Approach for the Recognition of Activities of Daily Living Using Data from Wearable Sensors.
    Nisar MA; Shirahama K; Irshad MT; Huang X; Grzegorzek M
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors.
    Li F; Shirahama K; Nisar MA; Köping L; Grzegorzek M
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29495310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Segment-Based Unsupervised Learning Method in Sensor-Based Human Activity Recognition.
    Takenaka K; Kondo K; Hasegawa T
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition.
    Ordóñez FJ; Roggen D
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26797612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mobile sensor based human activity recognition: distinguishing of challenging activities by applying long short-term memory deep learning modified by residual network concept.
    Shojaedini SV; Beirami MJ
    Biomed Eng Lett; 2020 Aug; 10(3):419-430. PubMed ID: 32864175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HarMI: Human Activity Recognition Via Multi-Modality Incremental Learning.
    Zhang X; Yu H; Yang Y; Gu J; Li Y; Zhuang F; Yu D; Ren Z
    IEEE J Biomed Health Inform; 2022 Mar; 26(3):939-951. PubMed ID: 34061754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recognition and Repetition Counting for ComplexPhysical Exercises with Deep Learning.
    Soro A; Brunner G; Tanner S; Wattenhofer R
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30744158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning in the Recognition of Activities of Daily Living Using Smartwatch Data.
    Cavalcante AF; Kunst VHL; Chaves TM; de Souza JDT; Ribeiro IM; Quintino JP; da Silva FQB; Santos ALM; Teichrieb V; da Gama AEF
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Data Preprocessing Approaches for Applying Deep Learning to Human Activity Recognition in the Context of Industry 4.0.
    Zheng X; Wang M; Ordieres-Meré J
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29970873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.