BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32751859)

  • 1. A Novel System for Real-Time, In Situ Monitoring of CO
    Ronan P; Kroukamp O; Liss SN; Wolfaardt G
    Microorganisms; 2020 Jul; 8(8):. PubMed ID: 32751859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between CO2-consuming autotrophy and CO2-producing heterotrophy in non-axenic phototrophic biofilms.
    Ronan P; Kroukamp O; Liss SN; Wolfaardt G
    PLoS One; 2021; 16(6):e0253224. PubMed ID: 34129611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into the comprehensive effect of carbon dioxide, light intensity and glucose on heterotrophic-assisted phototrophic microalgae biofilm growth: A multifactorial kinetic model.
    Ye Y; Ma S; Peng H; Huang Y; Zeng W; Xia A; Zhu X; Liao Q
    J Environ Manage; 2023 Jan; 325(Pt B):116582. PubMed ID: 36308961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest.
    Gross M; Henry W; Michael C; Wen Z
    Bioresour Technol; 2013 Dec; 150():195-201. PubMed ID: 24161650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing carbon dioxide utilization for microalgae biofilm cultivation.
    Blanken W; Schaap S; Theobald S; Rinzema A; Wijffels RH; Janssen M
    Biotechnol Bioeng; 2017 Apr; 114(4):769-776. PubMed ID: 27748511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae.
    Cheah WY; Show PL; Chang JS; Ling TC; Juan JC
    Bioresour Technol; 2015 May; 184():190-201. PubMed ID: 25497054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new biofilm based microalgal cultivation approach on shifting sand surface for desert cyanobacterium Microcoleus vaginatus.
    Lan S; Wu L; Yang H; Zhang D; Hu C
    Bioresour Technol; 2017 Aug; 238():602-608. PubMed ID: 28482286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sugar-stimulated CO
    Fu W; Gudmundsson S; Wichuk K; Palsson S; Palsson BO; Salehi-Ashtiani K; Brynjólfsson S
    Sci Total Environ; 2019 Mar; 654():275-283. PubMed ID: 30445327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct membrane-carbonation photobioreactor producing photoautotrophic biomass via carbon dioxide transfer and nutrient removal.
    Kim HW; Cheng J; Rittmann BE
    Bioresour Technol; 2016 Mar; 204():32-37. PubMed ID: 26771923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of microalgal biofilms for wastewater treatment and bioenergy production.
    Miranda AF; Ramkumar N; Andriotis C; Höltkemeier T; Yasmin A; Rochfort S; Wlodkowic D; Morrison P; Roddick F; Spangenberg G; Lal B; Subudhi S; Mouradov A
    Biotechnol Biofuels; 2017; 10():120. PubMed ID: 28491136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microscale profiling of photosynthesis-related variables in a highly productive biofilm photobioreactor.
    Li T; Piltz B; Podola B; Dron A; de Beer D; Melkonian M
    Biotechnol Bioeng; 2016 May; 113(5):1046-55. PubMed ID: 26498147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved biomass productivity in algal biofilms through synergistic interactions between photon flux density and carbon dioxide concentration.
    Schnurr PJ; Molenda O; Edwards E; Espie GS; Allen DG
    Bioresour Technol; 2016 Nov; 219():72-79. PubMed ID: 27479797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Chlorella vulgaris biomass productivity cultivated in biofilm and suspension from the aspect of light transmission and microalgae affinity to carbon dioxide.
    Huang Y; Xiong W; Liao Q; Fu Q; Xia A; Zhu X; Sun Y
    Bioresour Technol; 2016 Dec; 222():367-373. PubMed ID: 27741475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biofilm-based algal cultivation systems.
    Gross M; Jarboe D; Wen Z
    Appl Microbiol Biotechnol; 2015 Jul; 99(14):5781-9. PubMed ID: 26078112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microalgae biofilm in soil: Greenhouse gas emissions, ammonia volatilization and plant growth.
    Castro JS; Calijuri ML; Assemany PP; Cecon PR; de Assis IR; Ribeiro VJ
    Sci Total Environ; 2017 Jan; 574():1640-1648. PubMed ID: 27614861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of light direction and suspended cell concentrations on algal biofilm growth rates.
    Schnurr PJ; Espie GS; Allen DG
    Appl Microbiol Biotechnol; 2014 Oct; 98(20):8553-62. PubMed ID: 25149444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing culture conditions for heterotrophic-assisted photoautotrophic biofilm growth of Chlorella vulgaris to simultaneously improve microalgae biomass and lipid productivity.
    Ye Y; Huang Y; Xia A; Fu Q; Liao Q; Zeng W; Zheng Y; Zhu X
    Bioresour Technol; 2018 Dec; 270():80-87. PubMed ID: 30212777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production.
    Cheah WY; Ling TC; Juan JC; Lee DJ; Chang JS; Show PL
    Bioresour Technol; 2016 Sep; 215():346-356. PubMed ID: 27090405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.
    White CM; Strazisar BR; Granite EJ; Hoffman JS; Pennline HW;
    J Air Waste Manag Assoc; 2003 Jun; 53(6):645-715. PubMed ID: 12828330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From photons to biomass and biofuels: evaluation of different strategies for the improvement of algal biotechnology based on comparative energy balances.
    Wilhelm C; Jakob T
    Appl Microbiol Biotechnol; 2011 Dec; 92(5):909-19. PubMed ID: 22005740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.