These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32752074)

  • 1. Non-Contact Evaluation of Pigs' Body Temperature Incorporating Environmental Factors.
    Jia G; Li W; Meng J; Tan H; Feng Y
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32752074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-Invasive Cattle Body Temperature Measurement Using Infrared Thermography and Auxiliary Sensors.
    Wang FK; Shih JY; Juan PH; Su YC; Wang YC
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33915906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of increasing temperatures on physiological changes in pigs at different relative humidities.
    Huynh TT; Aarnink AJ; Verstegen MW; Gerrits WJ; Heetkamp MJ; Kemp B; Canh TT
    J Anim Sci; 2005 Jun; 83(6):1385-96. PubMed ID: 15890816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of infrared thermography to assess the influence of high environmental temperature on rabbits.
    de Lima V; Piles M; Rafel O; López-Béjar M; Ramón J; Velarde A; Dalmau A
    Res Vet Sci; 2013 Oct; 95(2):802-10. PubMed ID: 23642484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between mean body surface temperature measured by use of infrared thermography and ambient temperature in clinically normal pigs and pigs inoculated with Actinobacillus pleuropneumoniae.
    Loughmiller JA; Spire MF; Dritz SS; Fenwick BW; Hosni MH; Hogge SB
    Am J Vet Res; 2001 May; 62(5):676-81. PubMed ID: 11341384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of environmental factors on infrared eye temperature measurements in cattle.
    Church JS; Hegadoren PR; Paetkau MJ; Miller CC; Regev-Shoshani G; Schaefer AL; Schwartzkopf-Genswein KS
    Res Vet Sci; 2014 Feb; 96(1):220-6. PubMed ID: 24290729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infrared thermography--a non-invasive tool to evaluate thermal status of neonatal pigs based on surface temperature.
    Kammersgaard TS; Malmkvist J; Pedersen LJ
    Animal; 2013 Dec; 7(12):2026-34. PubMed ID: 24237678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Measurement of skin temperature as a method of detecting febrile diseases in swine].
    Wendt M; Eickhoff K; Koch R
    Dtsch Tierarztl Wochenschr; 1997 Jan; 104(1):29-33. PubMed ID: 9091283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regression model for predicting core body temperature in infrared thermal mass screening.
    Limpabandhu C; Hooper FSW; Li R; Tse Z
    IPEM Transl; 2022; 3():100006. PubMed ID: 35854880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Difference method for analysing infrared images in pigs with elevated body temperatures.
    Siewert C; Dänicke S; Kersten S; Brosig B; Rohweder D; Beyerbach M; Seifert H
    Z Med Phys; 2014 Mar; 24(1):6-15. PubMed ID: 24398117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishment of validated models for non-invasive prediction of rectal temperature of sows using infrared thermography and chemometrics.
    Feng YZ; Zhao HT; Jia GF; Ojukwu C; Tan HQ
    Int J Biometeorol; 2019 Oct; 63(10):1405-1415. PubMed ID: 31375909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of Core Body Temperature from Multiple Variables.
    Richmond VL; Davey S; Griggs K; Havenith G
    Ann Occup Hyg; 2015 Nov; 59(9):1168-78. PubMed ID: 26268995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The deformation monitoring of foundation pit by back propagation neural network and genetic algorithm and its application in geotechnical engineering.
    Luo J; Ren R; Guo K
    PLoS One; 2020; 15(7):e0233398. PubMed ID: 32609717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reliability of infrared ear thermometry in the prediction of rectal temperature in older inpatients.
    Smitz S; Van de Winckel A; Smitz MF
    J Clin Nurs; 2009 Feb; 18(3):451-6. PubMed ID: 19191993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infrared thermography of agonistic behaviour in pigs.
    Boileau A; Farish M; Turner SP; Camerlink I
    Physiol Behav; 2019 Oct; 210():112637. PubMed ID: 31374228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technical note: Assessment of an alternative technique for measuring body temperature in pigs.
    Petry A; McGilvray W; Rakhshandeh AR; Rakhshandeh A
    J Anim Sci; 2017 Jul; 95(7):3270-3274. PubMed ID: 28727118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A prediction model of ammonia emission from a fattening pig room based on the indoor concentration using adaptive neuro fuzzy inference system.
    Xie Q; Ni JQ; Su Z
    J Hazard Mater; 2017 Mar; 325():301-309. PubMed ID: 27951498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning-Based Microclimate Model for Indoor Air Temperature and Relative Humidity Prediction in a Swine Building.
    Arulmozhi E; Basak JK; Sihalath T; Park J; Kim HT; Moon BE
    Animals (Basel); 2021 Jan; 11(1):. PubMed ID: 33477540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-thermal signals govern selective brain cooling in pigs.
    Fuller A; Mitchell G; Mitchell D
    J Comp Physiol B; 1999 Dec; 169(8):605-11. PubMed ID: 10633565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting rectal temperature and respiration rate responses in lactating dairy cows exposed to heat stress.
    Li G; Chen S; Chen J; Peng D; Gu X
    J Dairy Sci; 2020 Jun; 103(6):5466-5484. PubMed ID: 32278558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.