BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32752310)

  • 1. Experimental demonstration of nanophotonic devices and circuits with colloidal quantum dot waveguides.
    Liu H; Rong K; Li Z; Chen J
    Opt Express; 2020 Aug; 28(16):23091-23104. PubMed ID: 32752310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pattern-assisted stacking colloidal quantum dots for photonic integrated circuits.
    Rong K; Liu H; Shi K; Chen J
    Nanoscale; 2019 Aug; 11(29):13885-13893. PubMed ID: 31304499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Imprinting of Quasi-3D Nanophotonic Structures into Colloidal Quantum-Dot Devices.
    Tang X; Chen M; Ackerman MM; Melnychuk C; Guyot-Sionnest P
    Adv Mater; 2020 Mar; 32(9):e1906590. PubMed ID: 31957096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning Solute-Redistribution Dynamics for Scalable Fabrication of Colloidal Quantum-Dot Optoelectronics.
    Choi MJ; Kim Y; Lim H; Alarousu E; Adhikari A; Shaheen BS; Kim YH; Mohammed OF; Sargent EH; Kim JY; Jung YS
    Adv Mater; 2019 Aug; 31(32):e1805886. PubMed ID: 31148263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facet-Oriented Coupling Enables Fast and Sensitive Colloidal Quantum Dot Photodetectors.
    Biondi M; Choi MJ; Wang Z; Wei M; Lee S; Choubisa H; Sagar LK; Sun B; Baek SW; Chen B; Todorović P; Najarian AM; Sedighian Rasouli A; Nam DH; Vafaie M; Li YC; Bertens K; Hoogland S; Voznyy O; García de Arquer FP; Sargent EH
    Adv Mater; 2021 Aug; 33(33):e2101056. PubMed ID: 34245178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastable low-cost colloidal quantum dot microlasers of operative temperature up to 450 K.
    Chang H; Zhong Y; Dong H; Wang Z; Xie W; Pan A; Zhang L
    Light Sci Appl; 2021 Mar; 10(1):60. PubMed ID: 33731676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colloidal quantum dot based solar cells: from materials to devices.
    Song JH; Jeong S
    Nano Converg; 2017; 4(1):21. PubMed ID: 28835877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Efficiency Photovoltaic Devices using Trap-Controlled Quantum-Dot Ink prepared via Phase-Transfer Exchange.
    Aqoma H; Al Mubarok M; Hadmojo WT; Lee EH; Kim TW; Ahn TK; Oh SH; Jang SY
    Adv Mater; 2017 May; 29(19):. PubMed ID: 28266746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colloidal quantum dot lasers built on a passive two-dimensional photonic crystal backbone.
    Chang H; Min K; Lee M; Kang M; Park Y; Cho KS; Roh YG; Hwang SW; Jeon H
    Nanoscale; 2016 Mar; 8(12):6571-6. PubMed ID: 26935411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable Colloidal Quantum Dot Inks Enable Inkjet-Printed High-Sensitivity Infrared Photodetectors.
    Sliz R; Lejay M; Fan JZ; Choi MJ; Kinge S; Hoogland S; Fabritius T; García de Arquer FP; Sargent EH
    ACS Nano; 2019 Oct; 13(10):11988-11995. PubMed ID: 31545597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-controllable fiber interferometer utilizing photoexcitation dynamics in colloidal quantum dot.
    Gao F; Wang Y; Xu L; Feng Z; Wu Q; Zhang B; Liu J; Tang J; Tang M; Liu H; Fu S; Ruan Y; Ebendorff-Heidepriem H; Liu D
    Opt Express; 2018 Feb; 26(4):3903-3914. PubMed ID: 29475247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Doubly Resonant Photonic Antenna for Single Infrared Quantum Dot Imaging at Telecommunication Wavelengths.
    Xie Z; Lefier Y; Suarez MA; Mivelle M; Salut R; Merolla JM; Grosjean T
    Nano Lett; 2017 Apr; 17(4):2152-2158. PubMed ID: 28339208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast Cascade Charge Transfer in Multibandgap Colloidal Quantum Dot Solids Enables Threshold Reduction for Optical Gain and Stimulated Emission.
    Taghipour N; Dalmases M; Whitworth GL; Wang Y; Konstantatos G
    Nano Lett; 2023 Sep; 23(18):8637-8642. PubMed ID: 37724790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deterministic Assembly of Colloidal Quantum Dots for Multifunctional Integrated Photonics.
    Zhao Y; Feng J; Chen G; Wu JJ; Wang XD; Jiang L; Wu Y
    Adv Mater; 2022 Jun; 34(24):e2110695. PubMed ID: 35411618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloidal quantum dot photovoltaics: a path forward.
    Kramer IJ; Sargent EH
    ACS Nano; 2011 Nov; 5(11):8506-14. PubMed ID: 21967723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilizing Surface Passivation Enables Stable Operation of Colloidal Quantum Dot Photovoltaic Devices at Maximum Power Point in an Air Ambient.
    Choi J; Choi MJ; Kim J; Dinic F; Todorovic P; Sun B; Wei M; Baek SW; Hoogland S; García de Arquer FP; Voznyy O; Sargent EH
    Adv Mater; 2020 Feb; 32(7):e1906497. PubMed ID: 31930771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All-Quantum-Dot Infrared Light-Emitting Diodes.
    Yang Z; Voznyy O; Liu M; Yuan M; Ip AH; Ahmed OS; Levina L; Kinge S; Hoogland S; Sargent EH
    ACS Nano; 2015 Dec; 9(12):12327-33. PubMed ID: 26575976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-Interfacial Confined Assembly of Colloidal Quantum Dots Quasisuperlattice Microcavities for High-Resolution Full-Color Microlaser Arrays.
    Li H; Zhao Y; Qiu Y; Gao H; He K; Yang J; Zhao Y; OuYang G; Ma N; Wei X; Du Z; Jiang L; Wu Y
    Adv Mater; 2024 Jun; 36(23):e2314061. PubMed ID: 38350441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Halide-Driven Synthetic Control of InSb Colloidal Quantum Dots Enables Short-Wave Infrared Photodetectors.
    Muhammad ; Choi D; Parmar DH; Rehl B; Zhang Y; Atan O; Kim G; Xia P; Pina JM; Li M; Liu Y; Voznyy O; Hoogland S; Sargent EH
    Adv Mater; 2023 Nov; 35(46):e2306147. PubMed ID: 37734861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation doping of absorbent cotton derived carbon dots for quantum dot-sensitized solar cells.
    Huang P; Xu S; Zhang M; Zhong W; Xiao Z; Luo Y
    Phys Chem Chem Phys; 2019 Dec; 21(47):26133-26145. PubMed ID: 31750464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.