BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 32752367)

  • 1. Numerical analysis of an ultra-wideband metamaterial absorber with high absorptivity from visible light to near-infrared.
    Liu J; Ma WZ; Chen W; Yu GX; Chen YS; Deng XC; Yang CF
    Opt Express; 2020 Aug; 28(16):23748-23760. PubMed ID: 32752367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of a Multi-Layer Absorber Exhibiting the Broadband and High Absorptivity in Red Light and Near-Infrared Region.
    Peng G; Li WZ; Tseng LC; Yang CF
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-wideband and wide-angle perfect solar energy absorber based on Ti nanorings surface plasmon resonance.
    Zhou F; Qin F; Yi Z; Yao W; Liu Z; Wu X; Wu P
    Phys Chem Chem Phys; 2021 Aug; 23(31):17041-17048. PubMed ID: 34342321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial.
    Lei L; Li S; Huang H; Tao K; Xu P
    Opt Express; 2018 Mar; 26(5):5686-5693. PubMed ID: 29529770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-wideband and Polarization-Insensitive Perfect Absorber Using Multilayer Metamaterials, Lumped Resistors, and Strong Coupling Effects.
    Li SJ; Wu PX; Xu HX; Zhou YL; Cao XY; Han JF; Zhang C; Yang HH; Zhang Z
    Nanoscale Res Lett; 2018 Nov; 13(1):386. PubMed ID: 30498863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Parametric Analysis of a Wide-Angle and Polarization Insensitive Ultra-Broadband Metamaterial Absorber for Visible Optical Wavelength Applications.
    Chowdhury MZB; Islam MT; Hoque A; Alshammari AS; Alzamil A; Alsaif H; Alshammari BM; Hossain I; Samsuzzaman M
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Perfect Absorber Based on Similar Fabry-Perot Four-Band in the Visible Range.
    Wu P; Zhang C; Tang Y; Liu B; Lv L
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32182723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reverse design of metamaterial absorbers based on an equivalent circuit.
    Wang Y; Xuan X; Wu S; Zhu L; Zhu J; Shen X; Zhang Z; Hu C
    Phys Chem Chem Phys; 2022 Aug; 24(34):20390-20399. PubMed ID: 35983852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refractory Ultra-Broadband Perfect Absorber from Visible to Near-Infrared.
    Gao H; Peng W; Chu S; Cui W; Liu Z; Yu L; Jing Z
    Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30545120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region.
    Wu D; Liu C; Liu Y; Yu L; Yu Z; Chen L; Ma R; Ye H
    Opt Lett; 2017 Feb; 42(3):450-453. PubMed ID: 28146499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wide-Angle Polarization-Independent Ultra-Broadband Absorber from Visible to Infrared.
    Liu J; Chen W; Zheng JC; Chen YS; Yang CF
    Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31861856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of an Ultra-Wideband, Perfectly Absorptive Fractal Absorber with a Central Square Nanopillar in a Cylindrical Structure with a Square Hollow.
    Tsai ST; Huang JL; Ke PX; Yang CF; Chen HC
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-Wideband and Wide-Angle Perfect Solar Energy Absorber Based on Titanium and Silicon Dioxide Colloidal Nanoarray Structure.
    Wu P; Wei K; Xu D; Chen M; Zeng Y; Jian R
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wide-Oblique-Incident-Angle Stable Polarization-Insensitive Ultra-Wideband Metamaterial Perfect Absorber for Visible Optical Wavelength Applications.
    Hakim ML; Alam T; Islam MS; Salaheldeen M M; Almalki SHA; Baharuddin MH; Alsaif H; Islam MT
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-Broadband High-Efficiency Solar Absorber Based on Double-Size Cross-Shaped Refractory Metals.
    Li H; Niu J; Zhang C; Niu G; Ye X; Xie C
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32204359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angular- and Polarization-insensitive Ultrathin Double-layered Metamaterial Absorber for Ultra-wideband Application.
    Cong LL; Cao XY; Song T; Gao J; Lan JX
    Sci Rep; 2018 Jun; 8(1):9627. PubMed ID: 29941959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical Study of Ultra-Broadband Metamaterial Perfect Absorber Based on Four-Corner Star Array.
    Cheng Y; Xiong M; Chen M; Deng S; Liu H; Teng C; Yang H; Deng H; Yuan L
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical study of a wide-angle polarization-independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion.
    Wu D; Liu C; Liu Y; Xu Z; Yu Z; Yu L; Chen L; Ma R; Zhang J; Ye H
    RSC Adv; 2018 Jun; 8(38):21054-21064. PubMed ID: 35539953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near Perfect Absorber for Long-Wave Infrared Based on Localized Surface Plasmon Resonance.
    Sun L; Liu D; Su J; Li X; Zhou S; Wang K; Zhang Q
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metamaterial ultra-wideband solar absorbers based on a multi-layer structure with cross etching.
    Sun P; Feng H; Su L; Nie S; Li X; Zhou Y; Ran L; Gao Y
    Phys Chem Chem Phys; 2023 Apr; 25(14):10136-10142. PubMed ID: 36974981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.