BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 32752380)

  • 1. Classification of cell morphology with quantitative phase microscopy and machine learning.
    Li Y; Di J; Wang K; Wang S; Zhao J
    Opt Express; 2020 Aug; 28(16):23916-23927. PubMed ID: 32752380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skin lesion classification with ensembles of deep convolutional neural networks.
    Harangi B
    J Biomed Inform; 2018 Oct; 86():25-32. PubMed ID: 30103029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.
    Pang S; Yu Z; Orgun MA
    Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated semantic labeling of pediatric musculoskeletal radiographs using deep learning.
    Yi PH; Kim TK; Wei J; Shin J; Hui FK; Sair HI; Hager GD; Fritz J
    Pediatr Radiol; 2019 Jul; 49(8):1066-1070. PubMed ID: 31041454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of Automated Identification of Phases in Videos of Cataract Surgery Using Machine Learning and Deep Learning Techniques.
    Yu F; Silva Croso G; Kim TS; Song Z; Parker F; Hager GD; Reiter A; Vedula SS; Ali H; Sikder S
    JAMA Netw Open; 2019 Apr; 2(4):e191860. PubMed ID: 30951163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multilevel and Multiscale Feature Aggregation in Deep Networks for Facial Constitution Classification.
    Huan EY; Wen GH
    Comput Math Methods Med; 2019; 2019():1258782. PubMed ID: 31933675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks.
    Zhang Q; Ruan G; Yang W; Liu Y; Zhao K; Feng Q; Chen W; Wu EX; Feng Y
    Magn Reson Med; 2019 Dec; 82(6):2133-2145. PubMed ID: 31373061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning methods for automated classification of tumors with papillary thyroid carcinoma-like nuclei: A quantitative analysis.
    Böhland M; Tharun L; Scherr T; Mikut R; Hagenmeyer V; Thompson LDR; Perner S; Reischl M
    PLoS One; 2021; 16(9):e0257635. PubMed ID: 34550999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer learning radiomics based on multimodal ultrasound imaging for staging liver fibrosis.
    Xue LY; Jiang ZY; Fu TT; Wang QM; Zhu YL; Dai M; Wang WP; Yu JH; Ding H
    Eur Radiol; 2020 May; 30(5):2973-2983. PubMed ID: 31965257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different cell imaging methods did not significantly improve immune cell image classification performance.
    Ogawa T; Ochiai K; Iwata T; Ikawa T; Tsuzuki T; Shiroguchi K; Takahashi K
    PLoS One; 2022; 17(1):e0262397. PubMed ID: 35085287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Red blood cell classification in lensless single random phase encoding using convolutional neural networks.
    O'Connor T; Hawxhurst C; Shor LM; Javidi B
    Opt Express; 2020 Oct; 28(22):33504-33515. PubMed ID: 33115011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Deep Learning in Neuroradiology: Brain Haemorrhage Classification Using Transfer Learning.
    Dawud AM; Yurtkan K; Oztoprak H
    Comput Intell Neurosci; 2019; 2019():4629859. PubMed ID: 31281335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Transfer Learning Approach for Malignant Prostate Lesion Detection on Multiparametric MRI.
    Chen Q; Hu S; Long P; Lu F; Shi Y; Li Y
    Technol Cancer Res Treat; 2019 Jan; 18():1533033819858363. PubMed ID: 31221034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breast Cancer Classification from Histopathological Images with Inception Recurrent Residual Convolutional Neural Network.
    Alom MZ; Yakopcic C; Nasrin MS; Taha TM; Asari VK
    J Digit Imaging; 2019 Aug; 32(4):605-617. PubMed ID: 30756265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plankton classification with high-throughput submersible holographic microscopy and transfer learning.
    MacNeil L; Missan S; Luo J; Trappenberg T; LaRoche J
    BMC Ecol Evol; 2021 Jun; 21(1):123. PubMed ID: 34134620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epileptic seizure detection: a comparative study between deep and traditional machine learning techniques.
    Sahu R; Dash SR; Cacha LA; Poznanski RR; Parida S
    J Integr Neurosci; 2020 Mar; 19(1):1-9. PubMed ID: 32259881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Cell Phenotype Classification Using Deep Convolutional Neural Networks.
    Dürr O; Sick B
    J Biomol Screen; 2016 Oct; 21(9):998-1003. PubMed ID: 26950929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transfer Learning From Convolutional Neural Networks for Computer-Aided Diagnosis: A Comparison of Digital Breast Tomosynthesis and Full-Field Digital Mammography.
    Mendel K; Li H; Sheth D; Giger M
    Acad Radiol; 2019 Jun; 26(6):735-743. PubMed ID: 30076083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning-Based Methods for Automatic Diagnosis of Skin Lesions.
    El-Khatib H; Popescu D; Ichim L
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32245258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partially spatially coherent digital holographic microscopy and machine learning for quantitative analysis of human spermatozoa under oxidative stress condition.
    Dubey V; Popova D; Ahmad A; Acharya G; Basnet P; Mehta DS; Ahluwalia BS
    Sci Rep; 2019 Mar; 9(1):3564. PubMed ID: 30837490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.