These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 32752404)
1. Accurate deep-learning estimation of chlorophyll-a concentration from the spectral particulate beam-attenuation coefficient. Graban S; Dall'Olmo G; Goult S; Sauzède R Opt Express; 2020 Aug; 28(16):24214-24228. PubMed ID: 32752404 [TBL] [Abstract][Full Text] [Related]
2. Chlorophyll absorption and phytoplankton size information inferred from hyperspectral particulate beam attenuation. Houskeeper HF; Draper D; Kudela RM; Boss E Appl Opt; 2020 Aug; 59(22):6765-6773. PubMed ID: 32749383 [TBL] [Abstract][Full Text] [Related]
3. Deep learning based soft-sensor for continuous chlorophyll estimation on decentralized data. Sáinz-Pardo Díaz J; Castrillo M; López García Á Water Res; 2023 Nov; 246():120726. PubMed ID: 37871375 [TBL] [Abstract][Full Text] [Related]
4. Deep learning based regression for optically inactive inland water quality parameter estimation using airborne hyperspectral imagery. Niu C; Tan K; Jia X; Wang X Environ Pollut; 2021 Oct; 286():117534. PubMed ID: 34119861 [TBL] [Abstract][Full Text] [Related]
5. Hyperspectral Data and Machine Learning for Estimating CDOM, Chlorophyll Keller S; Maier PM; Riese FM; Norra S; Holbach A; Börsig N; Wilhelms A; Moldaenke C; Zaake A; Hinz S Int J Environ Res Public Health; 2018 Aug; 15(9):. PubMed ID: 30200256 [TBL] [Abstract][Full Text] [Related]
6. Effect of bio-optical parameter variability and uncertainties in reflectance measurements on the remote estimation of chlorophyll-a concentration in turbid productive waters: modeling results. Dall'Olmo G; Gitelson AA Appl Opt; 2006 May; 45(15):3577-92. PubMed ID: 16708105 [TBL] [Abstract][Full Text] [Related]
7. Reducing variability that is due to secondary pigments in the retrieval of chlorophyll a concentration from marine reflectance: a case study in the western equatorial Pacific Ocean. Gross L; Frouin R; Dupouy C; André JM; Thiria S Appl Opt; 2004 Jul; 43(20):4041-54. PubMed ID: 15285096 [TBL] [Abstract][Full Text] [Related]
8. [Variations in the optical absorption and attenuation properties of cultured phytoplankton and their relationships with cell size]. Zhou W; Sun ZH; Cao WX; Wang GF Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Dec; 32(12):3347-52. PubMed ID: 23427565 [TBL] [Abstract][Full Text] [Related]
9. Transfer learning for neural network model in chlorophyll-a dynamics prediction. Tian W; Liao Z; Wang X Environ Sci Pollut Res Int; 2019 Oct; 26(29):29857-29871. PubMed ID: 31410825 [TBL] [Abstract][Full Text] [Related]
10. [Quantitative retrieval of phytoplankton pigment based on water inherent optical properties in Lake Taihu]. Zhang YL; Qin BQ Huan Jing Ke Xue; 2006 Dec; 27(12):2439-44. PubMed ID: 17304837 [TBL] [Abstract][Full Text] [Related]
11. [Remote Sensing of Chlorophyll-a Concentrations in Lake Hongze Using Long Time Series MERIS Observations]. Liu G; Li YM; Lü H; Mu M; Lei SH; Wen S; Bi S; Ding XL Huan Jing Ke Xue; 2017 Sep; 38(9):3645-3656. PubMed ID: 29965243 [TBL] [Abstract][Full Text] [Related]
12. [Retrieval model for subtle variation of contamination stressed maize chlorophyll using hyperspectral data]. Ping W; Liu XN; Huang F Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jan; 30(1):197-201. PubMed ID: 20302113 [TBL] [Abstract][Full Text] [Related]
13. Parameterization of light absorption by components of seawater in optically complex coastal waters of the Crimea Peninsula (Black Sea). Dmitriev EV; Khomenko G; Chami M; Sokolov AA; Churilova TY; Korotaev GK Appl Opt; 2009 Mar; 48(7):1249-61. PubMed ID: 19252624 [TBL] [Abstract][Full Text] [Related]
14. [Spectral absorption properties of the water constituents in the estuary of Zhujiang River]. Wang SS; Wang YB; Fu QH; Yin B; Li YM Huan Jing Ke Xue; 2014 Dec; 35(12):4511-21. PubMed ID: 25826920 [TBL] [Abstract][Full Text] [Related]
15. Particle backscattering as a function of chlorophyll and phytoplankton size structure in the open-ocean. Brewin RJ; Dall'Olmo G; Sathyendranath S; Hardman-Mountford NJ Opt Express; 2012 Jul; 20(16):17632-52. PubMed ID: 23038316 [TBL] [Abstract][Full Text] [Related]
17. Long-term chlorophyll-a dynamics in tropical coastal waters of the western Bay of Bengal. Lotliker AA; Baliarsingh SK; Sahu KC; Kumar TS Environ Sci Pollut Res Int; 2020 Feb; 27(6):6411-6419. PubMed ID: 31873890 [TBL] [Abstract][Full Text] [Related]
18. [A hyperspectral assessment model for leaf chlorophyll content of Pinus massoniana based on neural network]. Liu WY; Pan J Ying Yong Sheng Tai Xue Bao; 2017 Apr; 28(4):1128-1136. PubMed ID: 29741308 [TBL] [Abstract][Full Text] [Related]
19. Long-term trend and environmental determinants of phytoplankton biomass in coastal waters of northwestern Bay of Bengal. Miranda J; Baliarsingh SK; Lotliker AA; Sahoo S; Sahu KC; Kumar TS Environ Monit Assess; 2019 Dec; 192(1):55. PubMed ID: 31858275 [TBL] [Abstract][Full Text] [Related]
20. [Monitoring of wheat leaf pigment concentration with hyper-spectral remote sensing]. Feng W; Zhu Y; Yao X; Tian YC; Yao XF; Cao WX Ying Yong Sheng Tai Xue Bao; 2008 May; 19(5):992-9. PubMed ID: 18655583 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]