These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 32752404)
21. Evaluating the portability of satellite derived chlorophyll-a algorithms for temperate inland lakes using airborne hyperspectral imagery and dense surface observations. Johansen R; Beck R; Nowosad J; Nietch C; Xu M; Shu S; Yang B; Liu H; Emery E; Reif M; Harwood J; Young J; Macke D; Martin M; Stillings G; Stumpf R; Su H Harmful Algae; 2018 Jun; 76():35-46. PubMed ID: 29887203 [TBL] [Abstract][Full Text] [Related]
22. Off-Nadir Hyperspectral Sensing for Estimation of Vertical Profile of Leaf Chlorophyll Content within Wheat Canopies. Kong W; Huang W; Casa R; Zhou X; Ye H; Dong Y Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29168757 [TBL] [Abstract][Full Text] [Related]
23. Efficient mapping of crash risk at intersections with connected vehicle data and deep learning models. Hu J; Huang MC; Yu X Accid Anal Prev; 2020 Sep; 144():105665. PubMed ID: 32683130 [TBL] [Abstract][Full Text] [Related]
24. Chlorophyll-a specific volume scattering function of phytoplankton. Tan H; Oishi T; Tanaka A; Doerffer R; Tan Y Opt Express; 2017 Jun; 25(12):A564-A573. PubMed ID: 28788838 [TBL] [Abstract][Full Text] [Related]
25. Transfer learning for neural network model in chlorophyll-a dynamics prediction by Wenchong Tian, Zhenliang Liao, and Xuan Wang. Adnan RM; Kisi O Environ Sci Pollut Res Int; 2020 Aug; 27(24):30899-30900. PubMed ID: 32358752 [No Abstract] [Full Text] [Related]
26. Spectra of particulate backscattering in natural waters. Gordon HR; Lewis MR; McLean SD; Twardowski MS; Freeman SA; Voss KJ; Boynton GC Opt Express; 2009 Aug; 17(18):16192-208. PubMed ID: 19724619 [TBL] [Abstract][Full Text] [Related]
27. Particulate optical scattering coefficients along an Atlantic Meridional Transect. Dall'olmo G; Boss E; Behrenfeld MJ; Westberry TK Opt Express; 2012 Sep; 20(19):21532-51. PubMed ID: 23037273 [TBL] [Abstract][Full Text] [Related]
28. Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm. Li S; Song K; Wang S; Liu G; Wen Z; Shang Y; Lyu L; Chen F; Xu S; Tao H; Du Y; Fang C; Mu G Sci Total Environ; 2021 Jul; 778():146271. PubMed ID: 33721636 [TBL] [Abstract][Full Text] [Related]
29. [Fluorescence peak shift corresponding to high chlorophyll concentrations in inland water]. Duan HT; Ma RH; Zhang YZ; Zhang B Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jan; 29(1):161-4. PubMed ID: 19385229 [TBL] [Abstract][Full Text] [Related]
30. Optical properties of Nannochloropsis sp and their application to remote estimation of cell mass. Gitelson AA; Grits YA; Etzion D; Ning Z; Richmond A Biotechnol Bioeng; 2000 Sep; 69(5):516-25. PubMed ID: 10898861 [TBL] [Abstract][Full Text] [Related]
31. Characterizing spatial distribution of chlorophyll a in the Southern Ocean on a circumpolar cruise in summer. Lu Z; Liu D; Liao J; Wang J; Li H; Zhang J Sci Total Environ; 2020 Mar; 708():134833. PubMed ID: 31796276 [TBL] [Abstract][Full Text] [Related]
32. [Analysis on Diurnal Variation of Chlorophyll-a Concentration of Taihu Lake Based on Optical Classification with GOCI Data]. Bao Y; Tian QJ; Chen M; Lü CG Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Aug; 36(8):2562-7. PubMed ID: 30074364 [TBL] [Abstract][Full Text] [Related]
33. Estimation of chlorophyll-a concentration in turbid productive waters using airborne hyperspectral data. Moses WJ; Gitelson AA; Perk RL; Gurlin D; Rundquist DC; Leavitt BC; Barrow TM; Brakhage P Water Res; 2012 Mar; 46(4):993-1004. PubMed ID: 22209281 [TBL] [Abstract][Full Text] [Related]
34. Understanding the learning mechanism of convolutional neural networks in spectral analysis. Zhang X; Xu J; Yang J; Chen L; Zhou H; Liu X; Li H; Lin T; Ying Y Anal Chim Acta; 2020 Jul; 1119():41-51. PubMed ID: 32439053 [TBL] [Abstract][Full Text] [Related]
35. Optical assessment of particle size and composition in the Santa Barbara Channel, California. Kostadinov TS; Siegel DA; Maritorena S; Guillocheau N Appl Opt; 2012 Jun; 51(16):3171-89. PubMed ID: 22695548 [TBL] [Abstract][Full Text] [Related]
36. Responses to the letter on "Transfer learning for neural network model in Chlorophyll-a dynamics prediction". Liao Z; Tian W; Wang X Environ Sci Pollut Res Int; 2020 Nov; 27(31):39667-39668. PubMed ID: 32623672 [No Abstract] [Full Text] [Related]
37. MS2CNN: predicting MS/MS spectrum based on protein sequence using deep convolutional neural networks. Lin YM; Chen CT; Chang JM BMC Genomics; 2019 Dec; 20(Suppl 9):906. PubMed ID: 31874640 [TBL] [Abstract][Full Text] [Related]
38. [Quantitative analysis of chlorophyll-a reflectance spectrum in red spectral region of water]. Ma WD; Xing QG; Zhang YZ; Shi P; Liu YL Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Feb; 30(2):313-7. PubMed ID: 20384114 [TBL] [Abstract][Full Text] [Related]
39. Hyperspectral Image Features Classification Using Deep Learning Recurrent Neural Networks. Venkatesan R; Prabu S J Med Syst; 2019 Jun; 43(7):216. PubMed ID: 31165259 [TBL] [Abstract][Full Text] [Related]
40. [Backscattering characteristics of Amphidinium carterae Hulburt]. Jiang LL; Wang L; Zhao DZ; Wang X Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Jul; 33(7):1892-6. PubMed ID: 24059196 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]