These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 32752412)

  • 1. Simultaneous super-linear excitation-emission and emission depletion allows imaging of upconversion nanoparticles with higher sub-diffraction resolution.
    Plöschner M; Denkova D; De Camillis S; Das M; Parker LM; Zheng X; Lu Y; Ojosnegros S; Piper JA
    Opt Express; 2020 Aug; 28(16):24308-24326. PubMed ID: 32752412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling the non-linear emission of upconversion nanoparticles to enhance super-resolution imaging performance.
    De Camillis S; Ren P; Cao Y; Plöschner M; Denkova D; Zheng X; Lu Y; Piper JA
    Nanoscale; 2020 Oct; 12(39):20347-20355. PubMed ID: 33006350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D sub-diffraction imaging in a conventional confocal configuration by exploiting super-linear emitters.
    Denkova D; Ploschner M; Das M; Parker LM; Zheng X; Lu Y; Orth A; Packer NH; Piper JA
    Nat Commun; 2019 Aug; 10(1):3695. PubMed ID: 31420541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles.
    Chen C; Wang F; Wen S; Su QP; Wu MCL; Liu Y; Wang B; Li D; Shan X; Kianinia M; Aharonovich I; Toth M; Jackson SP; Xi P; Jin D
    Nat Commun; 2018 Aug; 9(1):3290. PubMed ID: 30120242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct mechanisms for the upconversion of NaYF
    Shin K; Jung T; Lee E; Lee G; Goh Y; Heo J; Jung M; Jo EJ; Lee H; Kim MG; Lee KT
    Phys Chem Chem Phys; 2017 Apr; 19(15):9739-9744. PubMed ID: 28367577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoswitching the injected energy flux via core-sensitized energy migration upconversion for emission-varying STED microscopy.
    Pu R; Liu S; Wang B; Zhan Q
    Opt Lett; 2022 Sep; 47(18):4746-4749. PubMed ID: 36107080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A near-infrared magnetic aptasensor for Ochratoxin A based on near-infrared upconversion nanoparticles and magnetic nanoparticles.
    Dai S; Wu S; Duan N; Wang Z
    Talanta; 2016 Sep; 158():246-253. PubMed ID: 27343602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy.
    Liu Y; Lu Y; Yang X; Zheng X; Wen S; Wang F; Vidal X; Zhao J; Liu D; Zhou Z; Ma C; Zhou J; Piper JA; Xi P; Jin D
    Nature; 2017 Mar; 543(7644):229-233. PubMed ID: 28225761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resolution improvement in STED super-resolution microscopy at low power using a phasor plot approach.
    Wang L; Chen B; Yan W; Yang Z; Peng X; Lin D; Weng X; Ye T; Qu J
    Nanoscale; 2018 Aug; 10(34):16252-16260. PubMed ID: 30124714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Population Control of Upconversion Energy Transfer for Stimulation Emission Depletion Nanoscopy.
    Liu Y; Wen S; Wang F; Zuo C; Chen C; Zhou J; Jin D
    Adv Sci (Weinh); 2023 Jul; 10(20):e2205990. PubMed ID: 37088783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Achieving low-power single-wavelength-pair nanoscopy with NIR-II continuous-wave laser for multi-chromatic probes.
    Guo X; Pu R; Zhu Z; Qiao S; Liang Y; Huang B; Liu H; Labrador-Páez L; Kostiv U; Zhao P; Wu Q; Widengren J; Zhan Q
    Nat Commun; 2022 May; 13(1):2843. PubMed ID: 35606360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Super-resolution microscopy enabled by high-efficiency surface-migration emission depletion.
    Pu R; Zhan Q; Peng X; Liu S; Guo X; Liang L; Qin X; Zhao ZW; Liu X
    Nat Commun; 2022 Nov; 13(1):6636. PubMed ID: 36333290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depleted upconversion luminescence in NaYF
    Zhang H; Jia T; Chen L; Zhang Y; Zhang S; Feng D; Sun Z; Qiu J
    Phys Chem Chem Phys; 2017 Jul; 19(27):17756-17764. PubMed ID: 28657091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultralow Laser Power Three-Dimensional Superresolution Microscopy Based on Digitally Enhanced STED.
    Shen X; Wang L; Li W; Wang H; Zhou H; Zhu Y; Yan W; Qu J
    Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-bleaching fluorescence emission difference microscopy using single 808-nm laser excited red upconversion emission.
    Wu Q; Huang B; Peng X; He S; Zhan Q
    Opt Express; 2017 Dec; 25(25):30885-30894. PubMed ID: 29245768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic nanoparticles with ultrahigh stimulated emission depletion efficiency for low-power STED nanoscopy.
    Man Z; Lv Z; Xu Z; Cui H; Liao Q; Zheng L; Jin X; He Q; Fu H
    Nanoscale; 2019 Jul; 11(27):12990-12996. PubMed ID: 31264678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photobleaching reduction in modulated super-resolution microscopy.
    Ghithan JH; Noel JM; Roussel TJ; McCall MA; Alphenaar BW; Mendes SB
    Microscopy (Oxf); 2021 Jun; 70(3):278-288. PubMed ID: 33064828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple empirical algorithm for optimising depletion power and resolution for dye and system specific STED imaging.
    Combs CA; Sackett DL; Knutson JR
    J Microsc; 2019 Jun; 274(3):168-176. PubMed ID: 31012103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mirror-enhanced super-resolution microscopy.
    Yang X; Xie H; Alonas E; Liu Y; Chen X; Santangelo PJ; Ren Q; Xi P; Jin D
    Light Sci Appl; 2016; 5(6):e16134-. PubMed ID: 27398242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organic Nanoparticles-Assisted Low-Power STED Nanoscopy.
    Man Z; Cui H; Lv Z; Xu Z; Wu Z; Wu Y; Liao Q; Liu M; Xi P; Zheng L; Fu H
    Nano Lett; 2021 Apr; 21(8):3487-3494. PubMed ID: 33848175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.