These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32752416)

  • 1. Two-photon fluorescence-assisted laser ablation of non-planar metal surfaces: fabrication of optical apertures on tapered fibers for optical neural interfaces.
    Balena A; Bianco M; Pisano F; Pisanello M; Sileo L; Sabatini BL; Vittorio M; Pisanello F
    Opt Express; 2020 Jul; 28(15):21368-21381. PubMed ID: 32752416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical Calculation of the Light Propagation in Tapered Optical Fibers for Optical Neural Interfaces.
    Mach-Batlle R; Pisanello M; Pisano F; De Vittorio M; Pisanello F; Ciracì C
    J Lightwave Technol; 2022 Jan; 40(1):196-205. PubMed ID: 35221462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a fiber-optic laser delivery system capable of delivering 213 and 266 nm pulsed Nd:YAG laser radiation for tissue ablation in a fluid environment.
    Miller J; Yu XB; Yu PK; Cringle SJ; Yu DY
    Appl Opt; 2011 Feb; 50(6):876-85. PubMed ID: 21343967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical-assisted femtosecond laser writing of lab-in-fibers.
    Haque M; Lee KK; Ho S; Fernandes LA; Herman PR
    Lab Chip; 2014 Oct; 14(19):3817-29. PubMed ID: 25120138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exciting fluorescence compounds on an optical fiber's side surface with a liquid core waveguide.
    Ray JC; Almas MS; Tao S
    Opt Lett; 2016 Jan; 41(1):100-3. PubMed ID: 26696168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multimode Optical Fibers for Optical Neural Interfaces.
    De Vittorio M; Pisanello F
    Adv Exp Med Biol; 2021; 1293():565-583. PubMed ID: 33398843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modal demultiplexing properties of tapered and nanostructured optical fibers for in vivo optogenetic control of neural activity.
    Pisanello M; Della Patria A; Sileo L; Sabatini BL; De Vittorio M; Pisanello F
    Biomed Opt Express; 2015 Oct; 6(10):4014-26. PubMed ID: 26504650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast Laser Processing of Optical Fibers for Sensing Applications.
    Mihailov SJ; Hnatovsky C; Abdukerim N; Walker RB; Lu P; Xu Y; Bao X; Ding H; De Silva M; Coulas D; Grobnic D
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33669717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study of autofluorescence in flat and tapered optical fibers towards application in depth-resolved fluorescence lifetime photometry in brain tissue.
    Bianco M; Balena A; Pisanello M; Pisano F; Sileo L; Spagnolo B; Montinaro C; Sabatini BL; Vittorio M; Pisanello F
    Biomed Opt Express; 2021 Feb; 12(2):993-1010. PubMed ID: 33680555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of an Optical Waveguide-Mode-Field Compressor in Glass Using a Femtosecond Laser.
    Liu Z; Liao Y; Wang Z; Zhang Z; Liu Z; Qiao L; Cheng Y
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30308989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Focused ion beam nanomachining of tapered optical fibers for patterned light delivery.
    Pisano F; Pisanello M; Sileo L; Qualtieri A; Sabatini BL; De Vittorio M; Pisanello F
    Microelectron Eng; 2019 May; 195():41-49. PubMed ID: 31198228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ablation of porcine ligamentum flavum with Ho:YAG, q-switched Ho:YAG, and quadrupled Nd:YAG lasers.
    Johnson MR; Codd PJ; Hill WM; Boettcher T
    Lasers Surg Med; 2015 Dec; 47(10):839-51. PubMed ID: 26415136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microscopic imaging along tapered optical fibers by right-angle Rayleigh light scattering in linear and nonlinear regime.
    Haddad Y; Chrétien J; Beugnot JC; Godet A; Phan-Huy K; Margueron S; Fanjoux G
    Opt Express; 2021 Nov; 29(24):39159-39172. PubMed ID: 34809285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo.
    Engelbrecht CJ; Johnston RS; Seibel EJ; Helmchen F
    Opt Express; 2008 Apr; 16(8):5556-64. PubMed ID: 18542658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral analysis of waveguide tapered microfiber with an ultrathin metal coating.
    Lee CL
    Opt Express; 2010 Jul; 18(14):14768-77. PubMed ID: 20639963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Etching and printing of diffractive optical microstructures by a femtosecond excimer laser.
    Mailis S; Zergioti I; Koundourakis G; Ikiades A; Patentalaki A; Papakonstantinou P; Vainos NA; Fotakis C
    Appl Opt; 1999 Apr; 38(11):2301-8. PubMed ID: 18319795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Femtosecond mode-locked fiber laser employing a hollow optical fiber filled with carbon nanotube dispersion as saturable absorber.
    Choi SY; Rotermund F; Jung H; Oh K; Yeom DI
    Opt Express; 2009 Nov; 17(24):21788-93. PubMed ID: 19997422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dye lasers using tapered optical fibers.
    Pendock GJ; Mackenzie HS; Payne FP
    Appl Opt; 1993 Sep; 32(27):5236-42. PubMed ID: 20856331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Femtosecond laser inscription of asymmetric directional couplers for in-fiber optical taps and fiber cladding photonics.
    Grenier JR; Fernandes LA; Herman PR
    Opt Express; 2015 Jun; 23(13):16760-71. PubMed ID: 26191688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ TEM Raman spectroscopy and laser-based materials modification.
    Allen FI; Kim E; Andresen NC; Grigoropoulos CP; Minor AM
    Ultramicroscopy; 2017 Jul; 178():33-37. PubMed ID: 27523962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.