These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 32752518)
1. Large-area perfect blackbody sheets having aperiodic array of surface micro-cavities for high-precision thermal imager calibration. Shimizu Y; Koshikawa H; Imbe M; Yamaki T; Amemiya K Opt Express; 2020 Jul; 28(15):22606-22616. PubMed ID: 32752518 [TBL] [Abstract][Full Text] [Related]
2. Micro-cavity perfect blackbody composite with good heat transfer towards a flat-plate reference radiation source for thermal imagers. Shimizu Y; Koshikawa H; Imbe M; Yamaki T; Godo K; Sasajima N; Amemiya K Opt Lett; 2021 Oct; 46(19):4871-4874. PubMed ID: 34598221 [TBL] [Abstract][Full Text] [Related]
3. High-precision flat-plate reference infrared radiator using perfect blackbody composite with a microcavity structure. Shimizu Y; Imbe M; Godo K; Sasajima N; Koshikawa H; Yamaki T; Amemiya K Appl Opt; 2022 Jan; 61(2):517-522. PubMed ID: 35200891 [TBL] [Abstract][Full Text] [Related]
4. A small-size transfer blackbody cavity for calibration of infrared ear thermometers. Kim GJ; Yoo YS; Kim BH; Lim SD; Hyun Song J Physiol Meas; 2014 May; 35(5):753-62. PubMed ID: 24671115 [TBL] [Abstract][Full Text] [Related]
5. Design and Implementation of a Ku-Band High-Precision Blackbody Calibration Target. Liu J; Sun Z; Sun G; Li Y; Cao T; Tang W Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677079 [TBL] [Abstract][Full Text] [Related]
6. Infrared cameras are potential traceable "fixed points" for future thermometry studies. Yap Kannan R; Keresztes K; Hussain S; Coats TJ; Bown MJ J Med Eng Technol; 2015; 39(8):485-9. PubMed ID: 26468981 [TBL] [Abstract][Full Text] [Related]
7. Perfect blackbody radiation from a graphene nanostructure with application to high-temperature spectral emissivity measurements. Matsumoto T; Koizumi T; Kawakami Y; Okamoto K; Tomita M Opt Express; 2013 Dec; 21(25):30964-74. PubMed ID: 24514669 [TBL] [Abstract][Full Text] [Related]
8. Study on Method for Measuring Coating Emissivity by Applying Active Irradiation Based on Infrared Thermal Imager. Li Y; Zhang P; Chen G; Li Y; Hua W; Li Y; Jiao Z Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336563 [TBL] [Abstract][Full Text] [Related]
9. Radiation characteristics of a high-emissivity cylindrical-spherical cavity with obscuration. Meier SR; Joseph RI; Antiochos SK J Opt Soc Am A Opt Image Sci Vis; 2004 Jan; 21(1):104-12. PubMed ID: 14725402 [TBL] [Abstract][Full Text] [Related]
10. Temperature-Automated Calibration Methods for a Large-Area Blackbody Radiation Source. Yang W; Cao C; Huang P; Bai J; Zhao B; Zhu S; Jin H; Jin K; He X; Li C; Wang J; Liu S; Qi H Sensors (Basel); 2024 Mar; 24(5):. PubMed ID: 38475243 [TBL] [Abstract][Full Text] [Related]
11. An absolute calibration source for laboratory and satellite infrared spectrometers. Karoli AR; Hickey JR; Nelson RE Appl Opt; 1967 Jul; 6(7):1183-8. PubMed ID: 20062159 [TBL] [Abstract][Full Text] [Related]
12. A method for optimizing the reference temperature in the effective emissivity calculation of nonisothermal blackbody cavities. He S; Dai C; Wang Y; Liu J; Xie Y; Feng G; Wang J Opt Express; 2020 Sep; 28(20):29829-29842. PubMed ID: 33114873 [TBL] [Abstract][Full Text] [Related]
13. Analysis and improvements of effective emissivities of nonisothermal blackbody cavities. He S; Dai C; Wang Y; Liu J; Feng G; Wang J Appl Opt; 2020 Aug; 59(23):6977-6983. PubMed ID: 32788789 [TBL] [Abstract][Full Text] [Related]
14. Integrating-sphere-free reflectometry of blackbody cavity emissivity using the ratio of hemispherical-given solid angle reflections. Song J; Hao X; Yuan Z; Ding L Opt Express; 2020 Aug; 28(16):23294-23305. PubMed ID: 32752328 [TBL] [Abstract][Full Text] [Related]
15. Optical reflection characteristic-based emissivity analysis of a pyramid array flat-plate blackbody for remote sensor calibration. Wang G; Xia C; Song J; Zhou J; Sima R; Liu Z; Hao X Opt Express; 2023 May; 31(11):17878-17892. PubMed ID: 37381510 [TBL] [Abstract][Full Text] [Related]
16. Stretchable Metamaterials with Tunable Infrared Emissivity for Dynamic Thermal Management. Li Z; Long L; Tang Z; Chen X; Huang Z; Ren Y; Liu Y; Ye H ACS Appl Mater Interfaces; 2024 Sep; 16(36):47639-47645. PubMed ID: 39223078 [TBL] [Abstract][Full Text] [Related]
17. Blackbody-cavity ideal absorbers for solar energy harvesting. Tian Y; Liu X; Ghanekar A; Chen F; Caratenuto A; Zheng Y Sci Rep; 2020 Nov; 10(1):20304. PubMed ID: 33219278 [TBL] [Abstract][Full Text] [Related]
18. Design, Fabrication, and Performance Evaluation of Portable and Large-Area Blackbody System. Bae JY; Choi W; Hong SJ; Kim S; Kim E; Lee CH; Han YH; Hur H; Lee KS; Chang KS; Kim GH; Kim G Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33076430 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of Nano-Structured V-Shaped Grooves on B-Si Wafer for On-Board Spaceborne Blackbody System. Ryu Y; Hwang S; Lee J; Kim T J Nanosci Nanotechnol; 2019 Apr; 19(4):2202-2205. PubMed ID: 30486968 [TBL] [Abstract][Full Text] [Related]
20. Water at the ice point: a useful quasi-blackbody infrared calibration source. Horwitz JW Appl Opt; 1999 Jul; 38(19):4053-7. PubMed ID: 18323882 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]