These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 32752623)
1. The Winfree model with non-infinitesimal phase-response curve: Ott-Antonsen theory. Pazó D; Gallego R Chaos; 2020 Jul; 30(7):073139. PubMed ID: 32752623 [TBL] [Abstract][Full Text] [Related]
2. Comment on "The Winfree model with non-infinitesimal phase-response curve: Ott-Antonsen theory" [Chaos 30, 073139 (2020)]. Pazó D; Gallego R Chaos; 2021 Jan; 31(1):018101. PubMed ID: 33754787 [TBL] [Abstract][Full Text] [Related]
3. Synchronization scenarios in the Winfree model of coupled oscillators. Gallego R; Montbrió E; Pazó D Phys Rev E; 2017 Oct; 96(4-1):042208. PubMed ID: 29347589 [TBL] [Abstract][Full Text] [Related]
4. Dynamics of Structured Networks of Winfree Oscillators. Laing CR; Bläsche C; Means S Front Syst Neurosci; 2021; 15():631377. PubMed ID: 33643004 [TBL] [Abstract][Full Text] [Related]
5. Role of phase-dependent influence function in the Winfree model of coupled oscillators. Manoranjani M; Gopal R; Senthilkumar DV; Chandrasekar VK Phys Rev E; 2021 Dec; 104(6-1):064206. PubMed ID: 35030866 [TBL] [Abstract][Full Text] [Related]
6. Collective phase response curves for heterogeneous coupled oscillators. Hannay KM; Booth V; Forger DB Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022923. PubMed ID: 26382491 [TBL] [Abstract][Full Text] [Related]
7. Entrainment degree of globally coupled Winfree oscillators under external forcing. Zhang Y; Hoveijn I; Efstathiou K Chaos; 2022 Oct; 32(10):103121. PubMed ID: 36319288 [TBL] [Abstract][Full Text] [Related]
8. Phase synchronization between collective rhythms of globally coupled oscillator groups: noiseless nonidentical case. Kawamura Y; Nakao H; Arai K; Kori H; Kuramoto Y Chaos; 2010 Dec; 20(4):043110. PubMed ID: 21198080 [TBL] [Abstract][Full Text] [Related]
9. Collective mode reductions for populations of coupled noisy oscillators. Goldobin DS; Tyulkina IV; Klimenko LS; Pikovsky A Chaos; 2018 Oct; 28(10):101101. PubMed ID: 30384615 [TBL] [Abstract][Full Text] [Related]
10. Ott-Antonsen ansatz for the D-dimensional Kuramoto model: A constructive approach. Barioni AED; de Aguiar MAM Chaos; 2021 Nov; 31(11):113141. PubMed ID: 34881619 [TBL] [Abstract][Full Text] [Related]
11. Dynamics of the generalized Kuramoto model with nonlinear coupling: Bifurcation and stability. Zou W; Wang J Phys Rev E; 2020 Jul; 102(1-1):012219. PubMed ID: 32794968 [TBL] [Abstract][Full Text] [Related]
12. Diversity of dynamical behaviors due to initial conditions: Extension of the Ott-Antonsen ansatz for identical Kuramoto-Sakaguchi phase oscillators. Ichiki A; Okumura K Phys Rev E; 2020 Feb; 101(2-1):022211. PubMed ID: 32168625 [TBL] [Abstract][Full Text] [Related]
16. Exact finite-dimensional reduction for a population of noisy oscillators and its link to Ott-Antonsen and Watanabe-Strogatz theories. Cestnik R; Pikovsky A Chaos; 2022 Nov; 32(11):113126. PubMed ID: 36456354 [TBL] [Abstract][Full Text] [Related]
17. Resonance-induced synchronization in coupled phase oscillators with bimodal frequency distribution and periodic coupling. Li S; Wang X Phys Rev E; 2024 Aug; 110(2-1):024219. PubMed ID: 39295012 [TBL] [Abstract][Full Text] [Related]
18. Disorder-induced dynamics in a pair of coupled heterogeneous phase oscillator networks. Laing CR Chaos; 2012 Dec; 22(4):043104. PubMed ID: 23278039 [TBL] [Abstract][Full Text] [Related]
19. Synchronization transitions and sensitivity to asymmetry in the bimodal Kuramoto systems with Cauchy noise. Kostin VA; Munyaev VO; Osipov GV; Smirnov LA Chaos; 2023 Aug; 33(8):. PubMed ID: 38060795 [TBL] [Abstract][Full Text] [Related]
20. Dynamics and pattern formation in large systems of spatially-coupled oscillators with finite response times. Lee WS; Restrepo JG; Ott E; Antonsen TM Chaos; 2011 Jun; 21(2):023122. PubMed ID: 21721764 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]