These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32752623)

  • 41. Multiscale dynamics in communities of phase oscillators.
    Anderson D; Tenzer A; Barlev G; Girvan M; Antonsen TM; Ott E
    Chaos; 2012 Mar; 22(1):013102. PubMed ID: 22462978
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phase oscillators in modular networks: The effect of nonlocal coupling.
    Ujjwal SR; Punetha N; Ramaswamy R
    Phys Rev E; 2016 Jan; 93(1):012207. PubMed ID: 26871073
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Order parameter dynamics in complex systems: From models to data.
    Zheng Z; Xu C; Fan J; Liu M; Chen X
    Chaos; 2024 Feb; 34(2):. PubMed ID: 38341762
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Self-organized bistability on globally coupled higher-order networks.
    Anwar MS; Frolov N; Hramov AE; Ghosh D
    Phys Rev E; 2024 Jan; 109(1-1):014225. PubMed ID: 38366474
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impact of phase lag on synchronization in frustrated Kuramoto model with higher-order interactions.
    Dutta S; Mondal A; Kundu P; Khanra P; Pal P; Hens C
    Phys Rev E; 2023 Sep; 108(3-1):034208. PubMed ID: 37849147
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hierarchy of Exact Low-Dimensional Reductions for Populations of Coupled Oscillators.
    Cestnik R; Pikovsky A
    Phys Rev Lett; 2022 Feb; 128(5):054101. PubMed ID: 35179937
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of nonresonant interaction in ensembles of phase oscillators.
    Komarov M; Pikovsky A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016210. PubMed ID: 21867276
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The dynamics of network coupled phase oscillators: an ensemble approach.
    Barlev G; Antonsen TM; Ott E
    Chaos; 2011 Jun; 21(2):025103. PubMed ID: 21721781
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chimeras in phase oscillator networks locally coupled through an auxiliary field: Stability and bifurcations.
    Laing CR
    Chaos; 2023 Aug; 33(8):. PubMed ID: 38060784
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interplay of coupling and common noise at the transition to synchrony in oscillator populations.
    Pimenova AV; Goldobin DS; Rosenblum M; Pikovsky A
    Sci Rep; 2016 Dec; 6():38518. PubMed ID: 27922105
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A global bifurcation organizing rhythmic activity in a coupled network.
    Medvedev GS; Mizuhara MS; Phillips A
    Chaos; 2022 Aug; 32(8):083116. PubMed ID: 36049909
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Low-dimensional behavior of Kuramoto model with inertia in complex networks.
    Ji P; Peron TK; Rodrigues FA; Kurths J
    Sci Rep; 2014 May; 4():4783. PubMed ID: 24786680
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Model reduction for the Kuramoto-Sakaguchi model: The importance of nonentrained rogue oscillators.
    Yue W; Smith LD; Gottwald GA
    Phys Rev E; 2020 Jun; 101(6-1):062213. PubMed ID: 32688503
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dynamics of a population of oscillatory and excitable elements.
    O'Keeffe KP; Strogatz SH
    Phys Rev E; 2016 Jun; 93(6):062203. PubMed ID: 27415251
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Asymmetric couplings enhance the transition from chimera state to synchronization.
    Tian C; Bi H; Zhang X; Guan S; Liu Z
    Phys Rev E; 2017 Nov; 96(5-1):052209. PubMed ID: 29347748
    [TBL] [Abstract][Full Text] [Related]  

  • 56. From the Kuramoto-Sakaguchi model to the Kuramoto-Sivashinsky equation.
    Kawamura Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):010901. PubMed ID: 24580159
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficient moment-based approach to the simulation of infinitely many heterogeneous phase oscillators.
    León I; Pazó D
    Chaos; 2022 Jun; 32(6):063124. PubMed ID: 35778114
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chimeras on annuli.
    Laing CR
    Chaos; 2022 Aug; 32(8):083105. PubMed ID: 36049938
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cluster synchrony in systems of coupled phase oscillators with higher-order coupling.
    Skardal PS; Ott E; Restrepo JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036208. PubMed ID: 22060476
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Partially coherent twisted states in arrays of coupled phase oscillators.
    Omel'chenko OE; Wolfrum M; Laing CR
    Chaos; 2014 Jun; 24(2):023102. PubMed ID: 24985416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.