These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 32752671)
1. Nearfield excited state imaging of bonding and antibonding plasmon modes in nanorod dimers via stimulated electron energy gain spectroscopy. Collette R; Garfinkel DA; Rack PD J Chem Phys; 2020 Jul; 153(4):044711. PubMed ID: 32752671 [TBL] [Abstract][Full Text] [Related]
2. Near field excited state imaging via stimulated electron energy gain spectroscopy of localized surface plasmon resonances in plasmonic nanorod antennas. Collette R; Garfinkel DA; Hu Z; Masiello DJ; Rack PD Sci Rep; 2020 Jul; 10(1):12537. PubMed ID: 32719406 [TBL] [Abstract][Full Text] [Related]
3. Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity. Huang WH; Li SF; Xu HT; Xiang ZX; Long YB; Deng HD Opt Express; 2018 Mar; 26(5):6202-6213. PubMed ID: 29529812 [TBL] [Abstract][Full Text] [Related]
4. Stimulated electron energy loss and gain in an electron microscope without a pulsed electron gun. Das P; Blazit JD; Tencé M; Zagonel LF; Auad Y; Lee YH; Ling XY; Losquin A; Colliex C; Stéphan O; García de Abajo FJ; Kociak M Ultramicroscopy; 2019 Aug; 203():44-51. PubMed ID: 31000482 [TBL] [Abstract][Full Text] [Related]
5. Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers. Alber I; Sigle W; Müller S; Neumann R; Picht O; Rauber M; van Aken PA; Toimil-Molares ME ACS Nano; 2011 Dec; 5(12):9845-53. PubMed ID: 22077953 [TBL] [Abstract][Full Text] [Related]
6. Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer. Sheikholeslami S; Jun YW; Jain PK; Alivisatos AP Nano Lett; 2010 Jul; 10(7):2655-60. PubMed ID: 20536212 [TBL] [Abstract][Full Text] [Related]
7. Nanoscale mapping of shifts in dark plasmon modes in sub 10 nm aluminum nanoantennas. Elibol K; Downing C; Hobbs RG Nanotechnology; 2022 Sep; 33(47):. PubMed ID: 35944508 [TBL] [Abstract][Full Text] [Related]
8. High spatial and energy resolution electron energy loss spectroscopy of the magnetic and electric excitations in plasmonic nanorod oligomers. Pakeltis G; Rotunno E; Khorassani S; Garfinkel DA; Collette R; West CA; Retterer ST; Idrobo JC; Masiello DJ; Rack PD Opt Express; 2021 Feb; 29(3):4661-4671. PubMed ID: 33771037 [TBL] [Abstract][Full Text] [Related]
9. Signatures of Fano interferences in the electron energy loss spectroscopy and cathodoluminescence of symmetry-broken nanorod dimers. Bigelow NW; Vaschillo A; Camden JP; Masiello DJ ACS Nano; 2013 May; 7(5):4511-9. PubMed ID: 23594310 [TBL] [Abstract][Full Text] [Related]
10. Angle- and energy-resolved plasmon coupling in gold nanorod dimers. Shao L; Woo KC; Chen H; Jin Z; Wang J; Lin HQ ACS Nano; 2010 Jun; 4(6):3053-62. PubMed ID: 20565141 [TBL] [Abstract][Full Text] [Related]
11. Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes. Koh AL; Bao K; Khan I; Smith WE; Kothleitner G; Nordlander P; Maier SA; McComb DW ACS Nano; 2009 Oct; 3(10):3015-22. PubMed ID: 19772292 [TBL] [Abstract][Full Text] [Related]
12. Effects of symmetry breaking and conductive contact on the plasmon coupling in gold nanorod dimers. Slaughter LS; Wu Y; Willingham BA; Nordlander P; Link S ACS Nano; 2010 Aug; 4(8):4657-66. PubMed ID: 20614909 [TBL] [Abstract][Full Text] [Related]
14. Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study. Myroshnychenko V; Nelayah J; Adamo G; Geuquet N; Rodríguez-Fernández J; Pastoriza-Santos I; MacDonald KF; Henrard L; Liz-Marzán LM; Zheludev NI; Kociak M; García de Abajo FJ Nano Lett; 2012 Aug; 12(8):4172-80. PubMed ID: 22746278 [TBL] [Abstract][Full Text] [Related]
15. Multipole surface plasmon resonances in conductively coupled metal nanowire dimers. Alber I; Sigle W; Demming-Janssen F; Neumann R; Trautmann C; van Aken PA; Toimil-Molares ME ACS Nano; 2012 Nov; 6(11):9711-7. PubMed ID: 23020274 [TBL] [Abstract][Full Text] [Related]
16. Probing Nanoparticle Plasmons with Electron Energy Loss Spectroscopy. Wu Y; Li G; Camden JP Chem Rev; 2018 Mar; 118(6):2994-3031. PubMed ID: 29215265 [TBL] [Abstract][Full Text] [Related]
17. Manipulating acoustic and plasmonic modes in gold nanostars. Chatterjee S; Ricciardi L; Deitz JI; Williams REA; McComb DW; Strangi G Nanoscale Adv; 2019 Jul; 1(7):2690-2698. PubMed ID: 36132721 [TBL] [Abstract][Full Text] [Related]
18. Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers. Yang ZJ; Zhang ZS; Zhang LH; Li QQ; Hao ZH; Wang QQ Opt Lett; 2011 May; 36(9):1542-4. PubMed ID: 21540921 [TBL] [Abstract][Full Text] [Related]
19. Plasmon transmission through excitonic subwavelength gaps. Sukharev M; Nitzan A J Chem Phys; 2016 Apr; 144(14):144703. PubMed ID: 27083741 [TBL] [Abstract][Full Text] [Related]
20. Surface plasmon modes of a single silver nanorod: an electron energy loss study. Nicoletti O; Wubs M; Mortensen NA; Sigle W; van Aken PA; Midgley PA Opt Express; 2011 Aug; 19(16):15371-9. PubMed ID: 21934899 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]