These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 32752696)
1. Computational prediction of muon stopping sites: A novel take on the unperturbed electrostatic potential method. Sturniolo S; Liborio L J Chem Phys; 2020 Jul; 153(4):044111. PubMed ID: 32752696 [TBL] [Abstract][Full Text] [Related]
2. Computational prediction of muon stopping sites using ab initio random structure searching (AIRSS). Liborio L; Sturniolo S; Jochym D J Chem Phys; 2018 Apr; 148(13):134114. PubMed ID: 29626903 [TBL] [Abstract][Full Text] [Related]
3. Comparison between density functional theory and density functional tight binding approaches for finding the muon stopping site in organic molecular crystals. Sturniolo S; Liborio L; Jackson S J Chem Phys; 2019 Apr; 150(15):154301. PubMed ID: 31005103 [TBL] [Abstract][Full Text] [Related]
4. Two-component density functional theory for muonic molecules: Inclusion of the electron-positive muon correlation functional. Goli M; Shahbazian S J Chem Phys; 2022 Jan; 156(4):044104. PubMed ID: 35105058 [TBL] [Abstract][Full Text] [Related]
5. Muon-fluorine entangled states in molecular magnets. Lancaster T; Blundell SJ; Baker PJ; Brooks ML; Hayes W; Pratt FL; Manson JL; Conner MM; Schlueter JA Phys Rev Lett; 2007 Dec; 99(26):267601. PubMed ID: 18233603 [TBL] [Abstract][Full Text] [Related]
6. Toward a muon-specific electronic structure theory: effective electronic Hartree-Fock equations for muonic molecules. Rayka M; Goli M; Shahbazian S Phys Chem Chem Phys; 2018 Feb; 20(6):4466-4477. PubMed ID: 29372727 [TBL] [Abstract][Full Text] [Related]
7. A machine learning platform for the discovery of materials. Belle CE; Aksakalli V; Russo SP J Cheminform; 2021 May; 13(1):42. PubMed ID: 34044889 [TBL] [Abstract][Full Text] [Related]
8. Effective electronic-only Kohn-Sham equations for the muonic molecules. Rayka M; Goli M; Shahbazian S Phys Chem Chem Phys; 2018 Mar; 20(13):8802-8811. PubMed ID: 29542771 [TBL] [Abstract][Full Text] [Related]
10. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
11. Muon-spin relaxation study of the double perovskite insulators Sr2 BOsO6 (B = Fe, Y, ln). Williams RC; Xiao F; Thomas IO; Clark SJ; Lancaster T; Cornish GA; Blundell SJ; Hayes W; Paul AK; Felser C; Jansen M J Phys Condens Matter; 2016 Feb; 28(7):076001. PubMed ID: 26807612 [TBL] [Abstract][Full Text] [Related]
13. Muon spin spectroscopy of ferrocene: characterization of muoniated ferrocenyl radicals. McKenzie I Phys Chem Chem Phys; 2014 Jun; 16(22):10600-6. PubMed ID: 24740122 [TBL] [Abstract][Full Text] [Related]
14. Spin relaxation of a short-lived radical in zero magnetic field. McKenzie I Phys Chem Chem Phys; 2011 Jan; 13(3):1168-73. PubMed ID: 21079834 [TBL] [Abstract][Full Text] [Related]
15. Anisotropic local modification of crystal field levels in Pr-based pyrochlores: a muon-induced effect modeled using density functional theory. Foronda FR; Lang F; Möller JS; Lancaster T; Boothroyd AT; Pratt FL; Giblin SR; Prabhakaran D; Blundell SJ Phys Rev Lett; 2015 Jan; 114(1):017602. PubMed ID: 25615502 [TBL] [Abstract][Full Text] [Related]
16. Muon spin relaxation study of LaTiO(3) and YTiO(3). Baker PJ; Lancaster T; Blundell SJ; Hayes W; Pratt FL; Itoh M; Kuroiwa S; Akimitsu J J Phys Condens Matter; 2008 Nov; 20(46):465203. PubMed ID: 21693843 [TBL] [Abstract][Full Text] [Related]
17. Muon-Substituted Malonaldehyde: Transforming a Transition State into a Stable Structure by Isotope Substitution. Goli M; Shahbazian S Chemistry; 2016 Feb; 22(7):2525-31. PubMed ID: 26749489 [TBL] [Abstract][Full Text] [Related]
18. Muon implantation experiments in films: Obtaining depth-resolved information. Simões AFA; Alberto HV; Vilão RC; Gil JM; Cunha JMV; Curado MA; Salomé PMP; Prokscha T; Suter A; Salman Z Rev Sci Instrum; 2020 Feb; 91(2):023906. PubMed ID: 32113453 [TBL] [Abstract][Full Text] [Related]
19. Projection-Based Wavefunction-in-DFT Embedding. Lee SJR; Welborn M; Manby FR; Miller TF Acc Chem Res; 2019 May; 52(5):1359-1368. PubMed ID: 30969117 [TBL] [Abstract][Full Text] [Related]
20. Intrinsic Nature of Spontaneous Magnetic Fields in Superconductors with Time-Reversal Symmetry Breaking. Huddart BM; Onuorah IJ; Isah MM; Bonfà P; Blundell SJ; Clark SJ; De Renzi R; Lancaster T Phys Rev Lett; 2021 Dec; 127(23):237002. PubMed ID: 34936766 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]