These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Beam splitting of low-contrast binary gratings under second Bragg angle incidence. Zheng J; Zhou C; Wang B; Feng J J Opt Soc Am A Opt Image Sci Vis; 2008 May; 25(5):1075-83. PubMed ID: 18451913 [TBL] [Abstract][Full Text] [Related]
6. Design of highly efficient transmission gratings with deep etched triangular grooves. Jing X; Zhang J; Jin S; Liang P; Tian Y Appl Opt; 2012 Nov; 51(33):7920-33. PubMed ID: 23207302 [TBL] [Abstract][Full Text] [Related]
7. Light trapping by backside diffraction gratings in silicon solar cells revisited. Wellenzohn M; Hainberger R Opt Express; 2012 Jan; 20(1):A20-7. PubMed ID: 22379675 [TBL] [Abstract][Full Text] [Related]
8. Gaussian beam incident on the one-dimensional diffraction gratings with the high-K metal gate stack structures. Kuo HF; Frederick J Nanosci Nanotechnol; 2014 Apr; 14(4):2780-5. PubMed ID: 24734690 [TBL] [Abstract][Full Text] [Related]
9. Design of fused-silica rectangular transmission gratings for polarizing beam splitter based on modal method. Zhao H; Yuan D Appl Opt; 2010 Feb; 49(5):759-63. PubMed ID: 20154741 [TBL] [Abstract][Full Text] [Related]
10. Rigorous coupled-wave analysis for practical planar dielectric gratings: 1. Thickness-changed holograms and some characteristics of diffraction efficiency. Kamiya N Appl Opt; 1998 Sep; 37(25):5843-53. PubMed ID: 18286078 [TBL] [Abstract][Full Text] [Related]
11. Localized input fields in rigorous coupled-wave analysis. Auer M; Brenner KH J Opt Soc Am A Opt Image Sci Vis; 2014 Nov; 31(11):2385-93. PubMed ID: 25401349 [TBL] [Abstract][Full Text] [Related]
12. Design of retrodiffraction gratings for polarization-insensitive and polarization-sensitive characteristics by using the Taguchi method. Lee C; Hane K; Kim W; Lee SK Appl Opt; 2008 Jun; 47(18):3246-53. PubMed ID: 18566618 [TBL] [Abstract][Full Text] [Related]
13. Analysis of fiber bragg gratings by a side-diffraction interference technique. El-Diasty F; Heaney A; Erdogan T Appl Opt; 2001 Feb; 40(6):890-6. PubMed ID: 18357069 [TBL] [Abstract][Full Text] [Related]
14. Dispersion relation of guided-mode resonances and Bragg peaks in dielectric diffraction gratings. Nilsen-Hofseth S; Romero-Rochín V Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036614. PubMed ID: 11580469 [TBL] [Abstract][Full Text] [Related]
15. Optical Properties of Complex Plasmonic Materials Studied with Extended Effective Medium Theories Combined with Rigorous Coupled Wave Analysis. Nadal E; Barros N; Glénat H; Kachakachi H Materials (Basel); 2018 Feb; 11(3):. PubMed ID: 29495507 [TBL] [Abstract][Full Text] [Related]
16. Analysis of optical propagation characteristics of the ultra-long period grating using RCWA. Lee YJ; Kim YH; Park CM; Yang JK Appl Opt; 2023 Mar; 62(9):2376-2385. PubMed ID: 37132877 [TBL] [Abstract][Full Text] [Related]
17. Design considerations of form birefringent microstructures. Richter I; Sun PC; Xu F; Fainman Y Appl Opt; 1995 May; 34(14):2421-9. PubMed ID: 21052376 [TBL] [Abstract][Full Text] [Related]
18. Normal vector method for convergence improvement using the RCWA for crossed gratings. Schuster T; Ruoff J; Kerwien N; Rafler S; Osten W J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2880-90. PubMed ID: 17767260 [TBL] [Abstract][Full Text] [Related]
19. Diffraction of light from phase gratings at large modulation depths: transient-grating experiments in liquids at high laser powers. Chen H; Diebold G Opt Lett; 1999 Feb; 24(4):211-3. PubMed ID: 18071457 [TBL] [Abstract][Full Text] [Related]