These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32752871)

  • 1. Long stroke displacement measurement with reduced coupling error supporting high precision control of a beam flexure-based micro-stage.
    Lu S; Yan P; Zhang B
    Rev Sci Instrum; 2020 Jul; 91(7):073701. PubMed ID: 32752871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A disturbance observer-based adaptive control approach for flexure beam nano manipulators.
    Zhang Y; Yan P; Zhang Z
    ISA Trans; 2016 Jan; 60():206-217. PubMed ID: 26546099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-axis control of flexure-based motion system for optical fibre transceiver assembly using fixed-order controller.
    Zhu H; Pang CK; Teo TJ
    ISA Trans; 2019 Mar; 86():266-275. PubMed ID: 30420142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser heterodyne interferometer with rotational error compensation for precision displacement measurement.
    Zhang E; Chen B; Zheng H; Yan L; Teng X
    Opt Express; 2018 Jan; 26(1):90-98. PubMed ID: 29328296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A two-axis in-plane motion measurement system based on optical beam deflection.
    Sriramshankar R; Sri Muthu Mrinalini R; Jayanth GR
    Rev Sci Instrum; 2013 Oct; 84(10):105001. PubMed ID: 24182152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a novel 5-DOF flexure-based compound alignment stage for Roll-to-Roll Printed Electronics.
    Chen W; Yang S; Liu J; Chen W; Jin Y
    Rev Sci Instrum; 2017 Feb; 88(2):025002. PubMed ID: 28249512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and experiment of multidimensional and subnanometer stage driven by spatially distributed piezoelectric ceramics.
    Zhang F; Huang Q; Zhang C; Cheng B; Cheng R; Zhang L; Li H
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38739424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design, analysis and testing of a parallel-kinematic high-bandwidth XY nanopositioning stage.
    Li CX; Gu GY; Yang MJ; Zhu LM
    Rev Sci Instrum; 2013 Dec; 84(12):125111. PubMed ID: 24387472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-precision compliant mechanism for lens XY micro-adjustment.
    Zhao L; Yu X; Li P; Qiao Y
    Rev Sci Instrum; 2020 Mar; 91(3):035004. PubMed ID: 32259923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Testing of a Compliant ZTTΘ Positional Adjustment System with Hybrid Amplification.
    Liao Z; Lin Z; Tang H; Liu B; Jia Y
    Micromachines (Basel); 2024 Apr; 15(5):. PubMed ID: 38793182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a Large-Range XY-Compliant Micropositioning Stage with Laser-Based Sensing and Active Disturbance Rejection Control.
    Kassa AA; Shirinzadeh B; Tran KS; Lai KZ; Tian Y; Qin Y; Wei H
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38276356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser heterodyne interferometric system with following interference units for large X-Y-θ planar motion measurement.
    Zhang E; Chen B; Sun J; Yan L; Zhang S
    Opt Express; 2017 Jun; 25(12):13684-13690. PubMed ID: 28788910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel flexure-based vertical nanopositioning stage with large travel range.
    Zhu X; Xu X; Wen Z; Ren J; Liu P
    Rev Sci Instrum; 2015 Oct; 86(10):105112. PubMed ID: 26520989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust disturbance rejection control of a biped robotic system using high-order extended state observer.
    Martínez-Fonseca N; Castañeda LÁ; Uranga A; Luviano-Juárez A; Chairez I
    ISA Trans; 2016 May; 62():276-86. PubMed ID: 26928517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active disturbance rejection control of drag-free satellites considering the effect of micro-propulsion noise.
    Zhou J; Pang A; Zhou H
    iScience; 2023 Jul; 26(7):107213. PubMed ID: 37485376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology.
    Chen B; Cheng L; Yan L; Zhang E; Lou Y
    Rev Sci Instrum; 2017 Mar; 88(3):035114. PubMed ID: 28372378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modified reduced order observer based linear active disturbance rejection control for TITO systems.
    Pawar SN; Chile RH; Patre BM
    ISA Trans; 2017 Nov; 71(Pt 2):480-494. PubMed ID: 28803625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, optimization, and characterization of an XY nanopositioning stage with multi-level spatial flexure hinges for high-precision large-stroke motion guidance.
    Shi Z; Li X; Zhu Z
    Rev Sci Instrum; 2023 Dec; 94(12):. PubMed ID: 38117196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance optimization of linear active disturbance rejection control approach by modified bat inspired algorithm for single area load frequency control concerning high wind power penetration.
    Ali S; Yang G; Huang C
    ISA Trans; 2018 Oct; 81():163-176. PubMed ID: 30072035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a straightness measurement and compensation system with multiple right-angle reflectors and a lead zirconate titanate-based compensation stage.
    Liu CH; Chen JH; Teng YF
    Rev Sci Instrum; 2009 Nov; 80(11):115105. PubMed ID: 19947755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.