BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32753189)

  • 1. Positive effects of high salinity can buffer the negative effects of experimental warming on functional traits of the seagrass Halophila ovalis.
    Ontoria Y; Webster C; Said N; Ruiz JM; Pérez M; Romero J; McMahon K
    Mar Pollut Bull; 2020 Sep; 158():111404. PubMed ID: 32753189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The negative effects of short-term extreme thermal events on the seagrass Posidonia oceanica are exacerbated by ammonium additions.
    Ontoria Y; Cuesta-Gracia A; Ruiz JM; Romero J; Pérez M
    PLoS One; 2019; 14(9):e0222798. PubMed ID: 31536606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined effects of temperature and the herbicide diuron on Photosystem II activity of the tropical seagrass Halophila ovalis.
    Wilkinson AD; Collier CJ; Flores F; Langlois L; Ralph PJ; Negri AP
    Sci Rep; 2017 Mar; 7():45404. PubMed ID: 28358396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seagrass proliferation precedes mortality during hypo-salinity events: a stress-induced morphometric response.
    Collier CJ; Villacorta-Rath C; van Dijk KJ; Takahashi M; Waycott M
    PLoS One; 2014; 9(4):e94014. PubMed ID: 24705377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of the seagrass Halophila ovalis to altered light quality in a simulated dredge plume.
    Strydom S; McMahon K; Lavery PS
    Mar Pollut Bull; 2017 Aug; 121(1-2):323-330. PubMed ID: 28625617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal concentrations in seagrass (Halophila ovalis) tissue and ambient sediment in a highly modified estuarine environment (Sydney estuary, Australia).
    Birch GF; Cox BM; Besley CH
    Mar Pollut Bull; 2018 Jun; 131(Pt A):130-141. PubMed ID: 29886929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactive effects of global warming and eutrophication on a fast-growing Mediterranean seagrass.
    Ontoria Y; Gonzalez-Guedes E; Sanmartí N; Bernardeau-Esteller J; Ruiz JM; Romero J; Pérez M
    Mar Environ Res; 2019 Mar; 145():27-38. PubMed ID: 30795849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution and Localised Effects of the Invasive Ascidian Didemnum perlucidum (Monniot 1983) in an Urban Estuary.
    Simpson TS; Wernberg T; McDonald JI
    PLoS One; 2016; 11(5):e0154201. PubMed ID: 27144600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global warming enhances sulphide stress in a key seagrass species (NW Mediterranean).
    García R; Holmer M; Duarte CM; Marbà N
    Glob Chang Biol; 2013 Dec; 19(12):3629-39. PubMed ID: 24123496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic identification and evolutionary trends of the seagrass Halophila nipponica in temperate coastal waters of Korea.
    Kim YK; Kim SH; Yi JM; Kang CK; Short F; Lee KS
    PLoS One; 2017; 12(5):e0177772. PubMed ID: 28505209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses of the native species Sparganium angustifolium and the invasive species Egeria densa to warming and interspecific competition.
    Yu H; Shen N; Yu S; Yu D; Liu C
    PLoS One; 2018; 13(6):e0199478. PubMed ID: 29924874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Future warmer seas: increased stress and susceptibility to grazing in seedlings of a marine habitat-forming species.
    Hernán G; Ortega MJ; Gándara AM; Castejón I; Terrados J; Tomas F
    Glob Chang Biol; 2017 Nov; 23(11):4530-4543. PubMed ID: 28544549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eutrophication overrides warming as a stressor for a temperate African seagrass (Zostera capensis).
    Mvungi EF; Pillay D
    PLoS One; 2019; 14(4):e0215129. PubMed ID: 30973955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of short-term hypersalinity exposure on the susceptibility to wasting disease in the subtropical seagrass Thalassia testudinum.
    Trevathan SM; Kahn A; Ross C
    Plant Physiol Biochem; 2011 Sep; 49(9):1051-8. PubMed ID: 21767958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study on anatomical traits and gas exchange responses due to belowground hypoxic stress and thermal stress in three tropical seagrasses.
    Soonthornkalump S; Ow YX; Saewong C; Buapet P
    PeerJ; 2022; 10():e12899. PubMed ID: 35186485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic light reduction reduces overall resilience to additional shading stress in the seagrass Halophila ovalis.
    Yaakub SM; Chen E; Bouma TJ; Erftemeijer PL; Todd PA
    Mar Pollut Bull; 2014 Jun; 83(2):467-74. PubMed ID: 24382468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limits on carbon sequestration in arid blue carbon ecosystems.
    Schile LM; Kauffman JB; Crooks S; Fourqurean JW; Glavan J; Megonigal JP
    Ecol Appl; 2017 Apr; 27(3):859-874. PubMed ID: 27992951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ocean warming and increased salinity threaten Bostrychia (Rhodophyta) species from genetically divergent populations.
    Borburema HDS; Yokoya NS; Souza JMC; Nauer F; Barbosa-Silva MS; Marinho-Soriano E
    Mar Environ Res; 2022 Jun; 178():105662. PubMed ID: 35642998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative effects of heat stress on photosynthesis and oxidative stress in Halophila ovalis and Thalassia hemprichii under different light conditions.
    Saewong C; Ow YX; Nualla-Ong A; Buapet P
    Mar Environ Res; 2024 Jun; 199():106589. PubMed ID: 38852494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses of the Mediterranean seagrass Cymodocea nodosa to combined temperature and salinity stress at the ionomic, transcriptomic, ultrastructural and photosynthetic levels.
    Tsioli S; Koutalianou M; Gkafas GA; Exadactylos A; Papathanasiou V; Katsaros CI; Orfanidis S; Küpper FC
    Mar Environ Res; 2022 Mar; 175():105512. PubMed ID: 35176528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.