These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 32753242)

  • 21. Pyrolysis of poppy capsule pulp for bio-oil production.
    Hopa DY; Yılmaz N; Alagöz O; Dilek M; Helvacı A; Durupınar Ü
    Waste Manag Res; 2016 Dec; 34(12):1316-1321. PubMed ID: 27895286
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Catalytic upgrade for pyrolysis of food waste in a bubbling fluidized-bed reactor.
    Ly HV; Tran QK; Kim SS; Kim J; Choi SS; Oh C
    Environ Pollut; 2021 Apr; 275():116023. PubMed ID: 33582642
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microwave-assisted pyrolysis of formic acid pretreated bamboo sawdust for bio-oil production.
    Dai L; Wang Y; Liu Y; Ruan R
    Environ Res; 2020 Mar; 182():108988. PubMed ID: 31821986
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of catalysts on distribution of polycyclic-aromatic hydrocarbon (PAHs) in bio-oils from the pyrolysis of dewatered sewage sludge at high and low temperatures.
    Hu Y; Yu W; Wibowo H; Xia Y; Lu Y; Yan M
    Sci Total Environ; 2019 Jun; 667():263-270. PubMed ID: 30831366
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical evaluation of pyrolysis oils from domestic and industrial effluent treatment station sludges with perspective to produce value-added products.
    Rodrigues JL; Campêlo JM; Wisniewski A; Hantao LW; Eberlin MN; Santos JM
    Waste Manag; 2023 Aug; 168():202-210. PubMed ID: 37311387
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catalytic co-pyrolysis of red cedar with methane to produce upgraded bio-oil.
    Tshikesho RS; Kumar A; Huhnke RL; Apblett A
    Bioresour Technol; 2019 Aug; 285():121299. PubMed ID: 31003206
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of bio-oil and bio-char produced by low-temperature microwave-assisted pyrolysis of olive pruning residue using various absorbers.
    Bartoli M; Rosi L; Giovannelli A; Frediani P; Frediani M
    Waste Manag Res; 2020 Feb; 38(2):213-225. PubMed ID: 31409255
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pyrolysis Oil Biorefinery.
    Meier D
    Adv Biochem Eng Biotechnol; 2019; 166():301-337. PubMed ID: 28289770
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improvement of bio-crude oil properties via co-pyrolysis of pine sawdust and waste polystyrene foam.
    Van Nguyen Q; Choi YS; Choi SK; Jeong YW; Kwon YS
    J Environ Manage; 2019 May; 237():24-29. PubMed ID: 30780052
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of a glass wool hot vapour filter on yields and properties of bio-oil derived from rapid pyrolysis of paddy residues.
    Pattiya A; Suttibak S
    Bioresour Technol; 2012 Jul; 116():107-13. PubMed ID: 22609663
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potential of stepwise pyrolysis for on-site treatment of agro-residues and enrichment of value-added chemicals.
    Bhatnagar A; Tolvanen H; Konttinen J
    Waste Manag; 2020 Dec; 118():667-676. PubMed ID: 33011544
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characteristics of products from fast pyrolysis of fractions of waste square timber and ordinary plywood using a fluidized bed reactor.
    Jung SH; Kim SJ; Kim JS
    Bioresour Technol; 2012 Jun; 114():670-6. PubMed ID: 22513256
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation on biomass nitrogen-enriched pyrolysis: Influence of temperature.
    Chen W; Chen Y; Yang H; Li K; Chen X; Chen H
    Bioresour Technol; 2018 Feb; 249():247-253. PubMed ID: 29049983
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bio-oil production via fast pyrolysis of biomass residues from cassava plants in a fluidised-bed reactor.
    Pattiya A
    Bioresour Technol; 2011 Jan; 102(2):1959-67. PubMed ID: 20864338
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bio-oil production via catalytic pyrolysis of Anchusa azurea: Effects of operating conditions on product yields and chromatographic characterization.
    Aysu T; Durak H; Güner S; Bengü AŞ; Esim N
    Bioresour Technol; 2016 Apr; 205():7-14. PubMed ID: 26800388
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Upgraded bio-oil production via catalytic fast co-pyrolysis of waste cooking oil and tea residual.
    Wang J; Zhong Z; Zhang B; Ding K; Xue Z; Deng A; Ruan R
    Waste Manag; 2017 Feb; 60():357-362. PubMed ID: 27625179
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of operational parameters on bio-oil production from biomass.
    Üresin E; Gülsaç II; Budak MS; Ünsal M; Özgür Büyüksakallı K; Aksoy P; Sayar A; Ünlü N; Okur O
    Waste Manag Res; 2019 May; 37(5):516-529. PubMed ID: 30632941
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antioxidant activities of the essential oils and methanol extracts from myrtle (Myrtus communis var. italica L.) leaf, stem and flower.
    Aidi Wannes W; Mhamdi B; Sriti J; Ben Jemia M; Ouchikh O; Hamdaoui G; Kchouk ME; Marzouk B
    Food Chem Toxicol; 2010 May; 48(5):1362-70. PubMed ID: 20211674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Production of bio-oil from fast pyrolysis of biomass using a pilot-scale circulating fluidized bed reactor and its characterization.
    Park JY; Kim JK; Oh CH; Park JW; Kwon EE
    J Environ Manage; 2019 Mar; 234():138-144. PubMed ID: 30616185
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physicochemical analysis and intermediate pyrolysis of Bambara Groundnut Shell (BGS), Sweet Sorghum Stalk (SSS), and Shea Nutshell (SNS).
    Ibrahim MD; Abakr YA; Gan S; Thangalazhy-Gopakumar S
    Environ Technol; 2024 Apr; 45(9):1870-1883. PubMed ID: 36476169
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.