These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 32753317)

  • 41. Optogenetic Approaches for Mesoscopic Brain Mapping.
    Kyweriga M; Mohajerani MH
    Methods Mol Biol; 2016; 1408():251-65. PubMed ID: 26965128
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Superior temporal resolution of Chronos versus channelrhodopsin-2 in an optogenetic model of the auditory brainstem implant.
    Hight AE; Kozin ED; Darrow K; Lehmann A; Boyden E; Brown MC; Lee DJ
    Hear Res; 2015 Apr; 322():235-41. PubMed ID: 25598479
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure-Function Relationship of Channelrhodopsins.
    Kato HE
    Adv Exp Med Biol; 2021; 1293():35-53. PubMed ID: 33398806
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An engineered channelrhodopsin optimized for axon terminal activation and circuit mapping.
    Hamada S; Nagase M; Yoshizawa T; Hagiwara A; Isomura Y; Watabe AM; Ohtsuka T
    Commun Biol; 2021 Apr; 4(1):461. PubMed ID: 33846537
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Long-term channelrhodopsin-2 (ChR2) expression can induce abnormal axonal morphology and targeting in cerebral cortex.
    Miyashita T; Shao YR; Chung J; Pourzia O; Feldman DE
    Front Neural Circuits; 2013; 7():8. PubMed ID: 23386813
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transient, Consequential Increases in Extracellular Potassium Ions Accompany Channelrhodopsin2 Excitation.
    Octeau JC; Gangwani MR; Allam SL; Tran D; Huang S; Hoang-Trong TM; Golshani P; Rumbell TH; Kozloski JR; Khakh BS
    Cell Rep; 2019 May; 27(8):2249-2261.e7. PubMed ID: 31116972
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optogenetic manipulation of medullary neurons in the locust optic lobe.
    Wang H; Dewell RB; Ehrengruber MU; Segev E; Reimer J; Roukes ML; Gabbiani F
    J Neurophysiol; 2018 Oct; 120(4):2049-2058. PubMed ID: 30110231
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of Channelrhodopsin and Archaerhodopsin in Cholinergic Neurons of Cre-Lox Transgenic Mice.
    Hedrick T; Danskin B; Larsen RS; Ollerenshaw D; Groblewski P; Valley M; Olsen S; Waters J
    PLoS One; 2016; 11(5):e0156596. PubMed ID: 27243816
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Channelrhodopsin-2-expressed dorsal root ganglion neurons activates calcium channel currents and increases action potential in spinal cord.
    Zhang Y; Yue J; Ai M; Ji Z; Liu Z; Cao X; Li L
    Spine (Phila Pa 1976); 2014 Jul; 39(15):E865-9. PubMed ID: 25171072
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optogenetically transduced human ES cell-derived neural progenitors and their neuronal progenies: Phenotypic characterization and responses to optical stimulation.
    Ryu J; Vincent PFY; Ziogas NK; Xu L; Sadeghpour S; Curtin J; Alexandris AS; Stewart N; Sima R; du Lac S; Glowatzki E; Koliatsos VE
    PLoS One; 2019; 14(11):e0224846. PubMed ID: 31710637
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Monomeric Covalent-Avidin for Rapid and Covalent Labeling of Quantum Dots to Cell Surface Proteins.
    Choi H; Lee JM; Jung Y
    Adv Biosyst; 2019 Mar; 3(3):e1800288. PubMed ID: 32627405
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development of optically sensitive liver cells.
    Vajanthri KY; Yadav P; Poddar S; Mahto SK
    Tissue Cell; 2018 Jun; 52():129-134. PubMed ID: 29857822
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of an efficient signal amplification strategy for label-free enzyme immunoassay using two site-specific biotinylated recombinant proteins.
    Tang JB; Tang Y; Yang HM
    Anal Chim Acta; 2015 Feb; 859():66-71. PubMed ID: 25622607
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Step-function luminopsins for bimodal prolonged neuromodulation.
    Berglund K; Fernandez AM; Gutekunst CN; Hochgeschwender U; Gross RE
    J Neurosci Res; 2020 Mar; 98(3):422-436. PubMed ID: 30957296
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optical Depolarization of DCX-Expressing Cells Promoted Cognitive Recovery and Maturation of Newborn Neurons via the Wnt/β-Catenin Pathway.
    Zhao ML; Chen SJ; Li XH; Wang LN; Chen F; Zhong SJ; Yang C; Sun SK; Li JJ; Dong HJ; Dong YQ; Wang Y; Chen C
    J Alzheimers Dis; 2018; 63(1):303-318. PubMed ID: 29614674
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The form and function of channelrhodopsin.
    Deisseroth K; Hegemann P
    Science; 2017 Sep; 357(6356):. PubMed ID: 28912215
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Generation of Peptides for Highly Efficient Proximity Utilizing Site-Specific Biotinylation in Cells.
    Kulyyassov A; Ramankulov Y; Ogryzko V
    Life (Basel); 2022 Feb; 12(2):. PubMed ID: 35207587
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Two chromatographic schemes for protein purification involving the biotin/avidin interaction under native conditions.
    Raducanu VS; Tehseen M; Shirbini A; Raducanu DV; Hamdan SM
    J Chromatogr A; 2020 Jun; 1621():461051. PubMed ID: 32268955
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Functional interrogation of neural circuits with virally transmitted optogenetic tools.
    De La Crompe B; Coulon P; Diester I
    J Neurosci Methods; 2020 Nov; 345():108905. PubMed ID: 32795553
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optogenetic Studies of Mitochondria.
    Chen K; Ernst P; Liu XM; Zhou L
    Methods Mol Biol; 2022; 2501():311-324. PubMed ID: 35857235
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.