These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32753514)

  • 41. Exposure to activity-based anorexia impairs contextual learning in weight-restored rats without affecting spatial learning, taste, anxiety, or dietary-fat preference.
    Boersma GJ; Treesukosol Y; Cordner ZA; Kastelein A; Choi P; Moran TH; Tamashiro KL
    Int J Eat Disord; 2016 Feb; 49(2):167-79. PubMed ID: 26711541
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neurotoxic hippocampal lesions have no effect on odor span and little effect on odor recognition memory but produce significant impairments on spatial span, recognition, and alternation.
    Dudchenko PA; Wood ER; Eichenbaum H
    J Neurosci; 2000 Apr; 20(8):2964-77. PubMed ID: 10751449
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Consolidation of spatial memory in the rat: Findings using zeta-inhibitory peptide.
    Hales JB; Ocampo AC; Broadbent NJ; Clark RE
    Neurobiol Learn Mem; 2016 Dec; 136():220-227. PubMed ID: 27818270
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Repeated acquisition and performance chamber for mice: a paradigm for assessment of spatial learning and memory.
    Brooks AI; Cory-Slechta DA; Murg SL; Federoff HJ
    Neurobiol Learn Mem; 2000 Nov; 74(3):241-58. PubMed ID: 11031130
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cognitive deficits in a rat model of temporal lobe epilepsy using touchscreen-based translational tools.
    Carron S; Dezsi G; Ozturk E; Nithianantharajah J; Jones NC
    Epilepsia; 2019 Aug; 60(8):1650-1660. PubMed ID: 31335966
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Contributions of dorsal striatal subregions to spatial alternation behavior.
    Moussa R; Poucet B; Amalric M; Sargolini F
    Learn Mem; 2011 Jul; 18(7):444-51. PubMed ID: 21685151
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dissociation of spatial memory systems in Williams syndrome.
    Bostelmann M; Fragnière E; Costanzo F; Di Vara S; Menghini D; Vicari S; Lavenex P; Lavenex PB
    Hippocampus; 2017 Nov; 27(11):1192-1203. PubMed ID: 28710800
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Working Memory Load Strengthens Reward Prediction Errors.
    Collins AGE; Ciullo B; Frank MJ; Badre D
    J Neurosci; 2017 Apr; 37(16):4332-4342. PubMed ID: 28320846
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Emphasizing the "positive" in positive reinforcement: using nonbinary rewarding for training monkeys on cognitive tasks.
    Fischer B; Wegener D
    J Neurophysiol; 2018 Jul; 120(1):115-128. PubMed ID: 29617217
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A test of the reward-contrast hypothesis.
    Dalecki SJ; Panoz-Brown DE; Crystal JD
    Behav Processes; 2017 Dec; 145():15-17. PubMed ID: 28965970
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rapid learning of a spatial memory task in a lacertid lizard (Podarcis liolepis).
    Font E
    Behav Processes; 2019 Dec; 169():103963. PubMed ID: 31545992
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Computational cognitive models of spatial memory in navigation space: a review.
    Madl T; Chen K; Montaldi D; Trappl R
    Neural Netw; 2015 May; 65():18-43. PubMed ID: 25659941
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Assessment of spatial memory.
    Wenk GL
    Curr Protoc Toxicol; 2001 May; Chapter 11():Unit11.3. PubMed ID: 20957640
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A model of hippocampally dependent navigation, using the temporal difference learning rule.
    Foster DJ; Morris RG; Dayan P
    Hippocampus; 2000; 10(1):1-16. PubMed ID: 10706212
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Memory systems in the rat: effects of reward probability, context, and congruency between working and reference memory.
    Roberts WA; Guitar NA; Marsh HL; MacDonald H
    Anim Cogn; 2016 May; 19(3):593-604. PubMed ID: 26914457
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Single mild traumatic brain injury results in transiently impaired spatial long-term memory and altered search strategies.
    Marschner L; Schreurs A; Lechat B; Mogensen J; Roebroek A; Ahmed T; Balschun D
    Behav Brain Res; 2019 Jun; 365():222-230. PubMed ID: 29499284
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sensorimotor developmental factors influencing the performance of laboratory rodents on learning and memory.
    Arakawa H
    Behav Brain Res; 2019 Dec; 375():112140. PubMed ID: 31401145
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dissociation in the Effects of Induced Neonatal Hypoxia-Ischemia on Rapid Auditory Processing and Spatial Working Memory in Male Rats.
    Smith AL; Alexander M; Chrobak JJ; Rosenkrantz TS; Fitch RH
    Dev Neurosci; 2015; 37(4-5):440-52. PubMed ID: 25791036
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thiamine deficiency in rats produces cognitive and memory deficits on spatial tasks that correlate with tissue loss in diencephalon, cortex and white matter.
    Langlais PJ; Savage LM
    Behav Brain Res; 1995 Apr; 68(1):75-89. PubMed ID: 7619308
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Midline thalamic reuniens lesions improve executive behaviors.
    Prasad JA; Abela AR; Chudasama Y
    Neuroscience; 2017 Mar; 345():77-88. PubMed ID: 26868974
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.