These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 32753617)
1. Daylight space debris laser ranging. Steindorfer MA; Kirchner G; Koidl F; Wang P; Jilete B; Flohrer T Nat Commun; 2020 Aug; 11(1):3735. PubMed ID: 32753617 [TBL] [Abstract][Full Text] [Related]
2. APPARILLO: a fully operational and autonomous staring system for LEO debris detection. Wagner P; Clausen T CEAS Space J; 2022; 14(2):303-326. PubMed ID: 34777620 [TBL] [Abstract][Full Text] [Related]
3. Active Control Loop of the BOROWIEC SLR Space Debris Tracking System. Suchodolski T Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336402 [TBL] [Abstract][Full Text] [Related]
4. Analysis of the Quality of SLR Station Coordinates Determined from Laser Ranging to the LARES Satellite. Schillak S; Lejba P; Michałek P Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498598 [TBL] [Abstract][Full Text] [Related]
5. Analysis of the Results of the Borowiec SLR Station (7811) for the Period 1993-2019 as an Example of the Quality Assessment of Satellite Laser Ranging Stations. Schillak S; Lejba P; Michałek P; Suchodolski T; Smagło A; Zapaśnik S Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062574 [TBL] [Abstract][Full Text] [Related]
6. LightForce photon-pressure collision avoidance: Efficiency analysis in the current debris environment and long-term simulation perspective. Yang FY; Nelson B; Aziz J; Carlino R; Perez AD; Faber N; Foster C; Frost C; Henze C; Karacalıoğlu AG; Levit C; Marshall W; Mason J; O'Toole C; Swenson J; Worden SP; Stupl J Acta Astronaut; 2016 Sep; 126():411-423. PubMed ID: 29302129 [TBL] [Abstract][Full Text] [Related]
7. Analysis of the Impact of Atmospheric Models on the Orbit Prediction of Space Debris. Ding Y; Li Z; Liu C; Kang Z; Sun M; Sun J; Chen L Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960692 [TBL] [Abstract][Full Text] [Related]
8. Active Decision Support System for Observation Scheduling Based on Image Analysis at the BOROWIEC SLR Station. Suchodolski T Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298390 [TBL] [Abstract][Full Text] [Related]
9. Tracking an untracked space debris after an inelastic collision using physics informed neural network. M H; Singh G; Kumar V; Buduru AB; Biswas SK Sci Rep; 2024 Feb; 14(1):3350. PubMed ID: 38336950 [TBL] [Abstract][Full Text] [Related]
10. A Real-Time Orbit Determination Method for Smooth Transition from Optical Tracking to Laser Ranging of Debris. Li B; Sang J; Zhang Z Sensors (Basel); 2016 Jun; 16(7):. PubMed ID: 27347958 [TBL] [Abstract][Full Text] [Related]
11. Light curve measurements with a superconducting nanowire single-photon detector. Tang R; Li Z; Li Y; Pi X; Su X; Li R; Zhang H; Zhai D; Fu H Opt Lett; 2018 Nov; 43(21):5488-5491. PubMed ID: 30382959 [TBL] [Abstract][Full Text] [Related]
12. LARAMOTIONS: a conceptual study on laser networks for near-term collision avoidance for space debris in the low Earth orbit. Scharring S; Dreyer H; Wagner G; Kästel J; Wagner P; Schafer E; Riede W; Bamann C; Hugentobler U; Lejba P; Suchodolski T; Döberl E; Weinzinger D; Promper W; Flohrer T; Setty S; Zayer I; Di Mira A; Cordelli E Appl Opt; 2021 Nov; 60(31):H24-H36. PubMed ID: 34807193 [TBL] [Abstract][Full Text] [Related]
13. A Robust Observation, Planning, and Control Pipeline for Autonomous Rendezvous with Tumbling Targets. Albee K; Oestreich C; Specht C; Terán Espinoza A; Todd J; Hokaj I; Lampariello R; Linares R Front Robot AI; 2021; 8():641338. PubMed ID: 34604314 [TBL] [Abstract][Full Text] [Related]
14. Relative attitude stability analysis of double satellite formation for gravity field exploration in space debris environment. Pan B; Meng Y Sci Rep; 2023 Sep; 13(1):15989. PubMed ID: 37749118 [TBL] [Abstract][Full Text] [Related]
15. The cost of (Un)regulation: Shrinking Earth's orbits and the need for sustainable space governance. Martin-Lawson D; Paladini S; Saha K; Yerushalmi E J Environ Manage; 2024 Jan; 349():119382. PubMed ID: 37951104 [TBL] [Abstract][Full Text] [Related]
16. Satellite Laser Ranging for Retrieval of the Local Values of the Love Jagoda M; Rutkowska M; Lejba P; Katzer J; Obuchovski R; Šlikas D Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33266091 [TBL] [Abstract][Full Text] [Related]
17. French transportable laser ranging station: scientific objectives, technical features, and performance. Nicolas J; Pierron F; Kasser M; Exertier P; Bonnefond P; Barlier FO; Haase J Appl Opt; 2000 Jan; 39(3):402-10. PubMed ID: 18337908 [TBL] [Abstract][Full Text] [Related]
18. Analysis of Space Debris Orbit Prediction Using Angle and Laser Ranging Data from Two Tracking Sites under Limited Observation Environment. Kim S; Lim HC; Bennett JC; Lachut M; Jo JH; Choi J; Choi M; Park E; Yu SY; Sung KP Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32244345 [TBL] [Abstract][Full Text] [Related]
19. Repeated Impact-Based Capture of a Spinning Object by a Dual-Arm Space Robot. Nagaoka K; Kameoka R; Yoshida K Front Robot AI; 2018; 5():115. PubMed ID: 33500994 [TBL] [Abstract][Full Text] [Related]
20. Search and study of the space debris and asteroids within ISON project. Molotov IE; Krugly YN; Elenin LV; Schildknecht T; Rumyantsev VV; Inasaridze RY; Aivazyan VR; Kapanadze GV; Canals LR; Graziani F; Teofilatto P; Ehgamberdiev SA; Burkhonov OA; Chornaya ED; Kochergin AV; Abdel-Aziz YA; Abdelaziz AM; Kouprianov VV; Zakhvatkin MV; Stepanyants VA; Reva IV; Serebryanskiy AV; Schmalz SE; Nikolenko IV An Acad Bras Cienc; 2021; 93(suppl 1):e20200145. PubMed ID: 33624725 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]