These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32753657)

  • 1. Low temperature synthesis of plasmonic molybdenum nitride nanosheets for surface enhanced Raman scattering.
    Guan H; Yi W; Li T; Li Y; Li J; Bai H; Xi G
    Nat Commun; 2020 Aug; 11(1):3889. PubMed ID: 32753657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. δ-MoN Yolk Microspheres with Ultrathin Nanosheets for a Wide-Spectrum, Sensitive, and Durable Surface-Enhanced Raman Scattering Substrate.
    Li Y; Du R; Li W; Li J; Yang H; Bai H; Zou M; Xi G
    Anal Chem; 2021 Sep; 93(36):12360-12366. PubMed ID: 34472338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. General molten-salt route to three-dimensional porous transition metal nitrides as sensitive and stable Raman substrates.
    Guan H; Li W; Han J; Yi W; Bai H; Kong Q; Xi G
    Nat Commun; 2021 Mar; 12(1):1376. PubMed ID: 33654080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasi-metal Microwave Route to MoN and Mo
    Du R; Yi W; Li W; Yang H; Bai H; Li J; Xi G
    ACS Nano; 2020 Oct; 14(10):13718-13726. PubMed ID: 32931250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molybdenum Nitride Porous Prisms with a Strong Plasmon Resonance Effect in the Visible Region for Surface-Enhanced Raman Spectroscopy.
    Song X; Li J; Kong Q; Bai H; Xi G
    J Phys Chem Lett; 2022 Jul; 13(29):6777-6782. PubMed ID: 35856813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective Preparation of Mo
    Song X; Yi W; Li J; Kong Q; Bai H; Xi G
    Nano Lett; 2021 May; 21(10):4410-4414. PubMed ID: 33970632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2D molybdenum nitride nanosheets as anode materials for improved lithium storage.
    Wang L; Zhang K; Pan H; Wang L; Wang D; Dai W; Qin H; Li G; Zhang J
    Nanoscale; 2018 Oct; 10(40):18936-18941. PubMed ID: 30302475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic Rare-Earth Nanosheets as Surface Enhanced Raman Scattering Substrates with High Sensitivity and Stability for Multicomponent Analysis.
    Li J; Yi W; Yin M; Yang H; Li J; Li Y; Jiao Z; Bai H; Zou M; Xi G
    ACS Nano; 2022 Jan; 16(1):1160-1169. PubMed ID: 35023714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase-controlled synthesis of molybdenum oxide nanoparticles for surface enhanced Raman scattering and photothermal therapy.
    Zhan Y; Liu Y; Zu H; Guo Y; Wu S; Yang H; Liu Z; Lei B; Zhuang J; Zhang X; Huang D; Hu C
    Nanoscale; 2018 Mar; 10(13):5997-6004. PubMed ID: 29542776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrathin Molybdenum Dioxide Nanosheets as Uniform and Reusable Surface-Enhanced Raman Spectroscopy Substrates with High Sensitivity.
    Wu H; Zhou X; Li J; Li X; Li B; Fei W; Zhou J; Yin J; Guo W
    Small; 2018 Sep; 14(37):e1802276. PubMed ID: 30117267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Surface Restraint-Induced Synthesis of Transition-Metal Nitride Ultrathin Nanocrystals as Ultrasensitive SERS Substrate with Ultrahigh Durability.
    Liu D; Yi W; Fu Y; Kong Q; Xi G
    ACS Nano; 2022 Aug; 16(8):13123-13133. PubMed ID: 35930704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable and tunable plasmon resonance of molybdenum oxide nanosheets from the ultraviolet to the near-infrared region for ultrasensitive surface-enhanced Raman analysis.
    Wang J; Yang Y; Li H; Gao J; He P; Bian L; Dong F; He Y
    Chem Sci; 2019 Jul; 10(25):6330-6335. PubMed ID: 31341587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photo-induced synthesis of molybdenum oxide quantum dots for surface-enhanced Raman scattering and photothermal therapy.
    Yu H; Zhuang Z; Li D; Guo Y; Li Y; Zhong H; Xiong H; Liu Z; Guo Z
    J Mater Chem B; 2020 Feb; 8(5):1040-1048. PubMed ID: 31939980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogenated Molybdenum Oxide Overlayers Formed on Mo Nitride Nanosheets in Ambient-Pressure CO
    Zhao C; Wang C; Xin H; Li H; Li R; Wang B; Wei W; Cui Y; Fu Q
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):26194-26203. PubMed ID: 35606336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boron Nitride Nanosheet-Veiled Gold Nanoparticles for Surface-Enhanced Raman Scattering.
    Cai Q; Mateti S; Watanabe K; Taniguchi T; Huang S; Chen Y; Li LH
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15630-6. PubMed ID: 27254250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epitaxial superconducting δ-MoN films grown by a chemical solution method.
    Zhang Y; Haberkorn N; Ronning F; Wang H; Mara NA; Zhuo M; Chen L; Lee JH; Blackmore KJ; Bauer E; Burrell AK; McCleskey TM; Hawley ME; Schulze RK; Civale L; Tajima T; Jia Q
    J Am Chem Soc; 2011 Dec; 133(51):20735-7. PubMed ID: 22126391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tungsten Nitride with a Two-Dimensional Multilayer Structure for Boosting the Surface-Enhanced Raman Effect.
    Kong Q; Liu D; Yang L; Zhao H; Zhang J; Xi G
    J Phys Chem Lett; 2023 Dec; 14(49):10894-10899. PubMed ID: 38033103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomically-Thin Holey 2D Nanosheets of Defect-Engineered MoN-Mo
    Lee J; Lee J; Jin X; Kim H; Hwang SJ
    Small; 2024 Mar; 20(9):e2306781. PubMed ID: 37806758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2D Higher-Metal Nitride Nanosheets for Solar Steam Generation.
    Wang L; Shang J; Yang G; Ma Y; Kou L; Liu D; Yin H; Hegh D; Razal J; Lei W
    Small; 2022 Jul; 18(28):e2201770. PubMed ID: 35694762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophilic molybdenum oxide nanomaterials with controlled morphology and strong plasmonic absorption for photothermal ablation of cancer cells.
    Song G; Shen J; Jiang F; Hu R; Li W; An L; Zou R; Chen Z; Qin Z; Hu J
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):3915-22. PubMed ID: 24564332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.