These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32753667)

  • 1. Laser cavitation rheology for measurement of elastic moduli and failure strain within hydrogels.
    Luo JC; Ching H; Wilson BG; Mohraz A; Botvinick EL; Venugopalan V
    Sci Rep; 2020 Aug; 10(1):13144. PubMed ID: 32753667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser Speckle Rheology for evaluating the viscoelastic properties of hydrogel scaffolds.
    Hajjarian Z; Nia HT; Ahn S; Grodzinsky AJ; Jain RK; Nadkarni SK
    Sci Rep; 2016 Dec; 6():37949. PubMed ID: 27905494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanomechanical measurements of polyethylene glycol hydrogels using atomic force microscopy.
    Drira Z; Yadavalli VK
    J Mech Behav Biomed Mater; 2013 Feb; 18():20-8. PubMed ID: 23237877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-rheology of hydrogels using direct drive force modulation atomic force microscopy.
    Nalam PC; Gosvami NN; Caporizzo MA; Composto RJ; Carpick RW
    Soft Matter; 2015 Nov; 11(41):8165-78. PubMed ID: 26337502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring the elastic modulus of soft biomaterials using nanoindentation.
    Xu D; Harvey T; Begiristain E; Domínguez C; Sánchez-Abella L; Browne M; Cook RB
    J Mech Behav Biomed Mater; 2022 Sep; 133():105329. PubMed ID: 35753160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localized characterization of brain tissue mechanical properties by needle induced cavitation rheology and volume controlled cavity expansion.
    Mijailovic AS; Galarza S; Raayai-Ardakani S; Birch NP; Schiffman JD; Crosby AJ; Cohen T; Peyton SR; Van Vliet KJ
    J Mech Behav Biomed Mater; 2021 Feb; 114():104168. PubMed ID: 33218928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rheological and recovery properties of poly(ethylene glycol) diacrylate hydrogels and human adipose tissue.
    Patel PN; Smith CK; Patrick CW
    J Biomed Mater Res A; 2005 Jun; 73(3):313-9. PubMed ID: 15834933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic cavitation rheometry.
    Mancia L; Yang J; Spratt JS; Sukovich JR; Xu Z; Colonius T; Franck C; Johnsen E
    Soft Matter; 2021 Mar; 17(10):2931-2941. PubMed ID: 33587083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histotripsy Bubble Dynamics in Elastic, Anisotropic Tissue-Mimicking Phantoms.
    Elliott J; Simon JC
    Ultrasound Med Biol; 2023 Mar; 49(3):853-865. PubMed ID: 36577567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of hydrogel microstructure using laser tweezers particle tracking and confocal reflection imaging.
    Kotlarchyk MA; Botvinick EL; Putnam AJ
    J Phys Condens Matter; 2010 May; 22(19):194121. PubMed ID: 20877437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of mechanical and biofunctional gradients in PEG diacrylate hydrogels by perfusion-based frontal photopolymerization.
    Turturro MV; Papavasiliou G
    J Biomater Sci Polym Ed; 2012; 23(7):917-39. PubMed ID: 21477459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of elastic modulus and impurities on bubble nuclei available for acoustic cavitation in polyacrylamide hydrogels.
    Rawnaque FS; Simon JC
    J Acoust Soc Am; 2022 Dec; 152(6):3502. PubMed ID: 36586847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cartilage-like mechanical properties of poly (ethylene glycol)-diacrylate hydrogels.
    Nguyen QT; Hwang Y; Chen AC; Varghese S; Sah RL
    Biomaterials; 2012 Oct; 33(28):6682-90. PubMed ID: 22749448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intra-volume processing of gelatine hydrogel by femtosecond laser-induced cavitation.
    Vérit I; Gemini L; Fricain JC; Kling R; Rigothier C
    Lasers Med Sci; 2021 Feb; 36(1):197-206. PubMed ID: 32594349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micromechanical characterization of soft, biopolymeric hydrogels: stiffness, resilience, and failure.
    Rattan S; Li L; Lau HK; Crosby AJ; Kiick KL
    Soft Matter; 2018 May; 14(18):3478-3489. PubMed ID: 29700541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using cavitation rheology to understand dipeptide-based low molecular weight gels.
    Fuentes-Caparrós AM; Dietrich B; Thomson L; Chauveau C; Adams DJ
    Soft Matter; 2019 Aug; 15(31):6340-6347. PubMed ID: 31289805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanomimetic hydrogels for vocal fold lamina propria regeneration.
    Kutty JK; Webb K
    J Biomater Sci Polym Ed; 2009; 20(5-6):737-56. PubMed ID: 19323887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macro-indentation testing of soft biological materials and assessment of hyper-elastic material models from inverse finite element analysis.
    Ayyalasomayajula V; Ervik Ø; Sorger H; Skallerud B
    J Mech Behav Biomed Mater; 2024 Mar; 151():106389. PubMed ID: 38211503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PEG-phosphorylcholine hydrogels as tunable and versatile platforms for mechanobiology.
    Herrick WG; Nguyen TV; Sleiman M; McRae S; Emrick TS; Peyton SR
    Biomacromolecules; 2013 Jul; 14(7):2294-304. PubMed ID: 23738528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microcavitation dynamics in viscoelastic tissue during histotripsy process.
    Abu-Nab AK; Mohamed KG; Abu-Bakr AF
    J Phys Condens Matter; 2022 May; 34(30):. PubMed ID: 35533648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.