These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32753667)

  • 21. PEG-phosphorylcholine hydrogels as tunable and versatile platforms for mechanobiology.
    Herrick WG; Nguyen TV; Sleiman M; McRae S; Emrick TS; Peyton SR
    Biomacromolecules; 2013 Jul; 14(7):2294-304. PubMed ID: 23738528
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Production of heparin-containing hydrogels for modulating cell responses.
    Nie T; Akins RE; Kiick KL
    Acta Biomater; 2009 Mar; 5(3):865-75. PubMed ID: 19167277
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative study of the viscoelastic mechanical behavior of agarose and poly(ethylene glycol) hydrogels.
    Roberts JJ; Earnshaw A; Ferguson VL; Bryant SJ
    J Biomed Mater Res B Appl Biomater; 2011 Oct; 99(1):158-69. PubMed ID: 21714081
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Micromechanical properties of hydrogels measured with MEMS resonant sensors.
    Corbin EA; Millet LJ; Pikul JH; Johnson CL; Georgiadis JG; King WP; Bashir R
    Biomed Microdevices; 2013 Apr; 15(2):311-9. PubMed ID: 23247581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue.
    Feig VR; Tran H; Lee M; Bao Z
    Nat Commun; 2018 Jul; 9(1):2740. PubMed ID: 30013027
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rheological studies of PLLA-PEO-PLLA triblock copolymer hydrogels.
    Aamer KA; Sardinha H; Bhatia SR; Tew GN
    Biomaterials; 2004 Mar; 25(6):1087-93. PubMed ID: 14615174
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimation of mechanical properties of a viscoelastic medium using a laser-induced microbubble interrogated by an acoustic radiation force.
    Yoon S; Aglyamov SR; Karpiouk AB; Kim S; Emelianov SY
    J Acoust Soc Am; 2011 Oct; 130(4):2241-8. PubMed ID: 21973379
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of 3,4-dihydroxyphenylalanine (DOPA) containing monomers and their co-polymerization with PEG-diacrylate to form hydrogels.
    Lee BP; Huang K; Nunalee FN; Shull KR; Messersmith PB
    J Biomater Sci Polym Ed; 2004; 15(4):449-64. PubMed ID: 15212328
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Micromechanical Properties of Microstructured Elastomeric Hydrogels.
    Lau HK; Rattan S; Fu H; Garcia CG; Barber DM; Kiick KL; Crosby AJ
    Macromol Biosci; 2020 May; 20(5):e1900360. PubMed ID: 32237050
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An optical system for cellular mechanostimulation in 3D hydrogels.
    Sreedasyam R; Wilson BG; Ferrandez PR; Botvinick EL; Venugopalan V
    Acta Biomater; 2024 Oct; ():. PubMed ID: 39368720
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multimode ultrasound viscoelastography for three-dimensional interrogation of microscale mechanical properties in heterogeneous biomaterials.
    Hong X; Annamalai RT; Kemerer TS; Deng CX; Stegemann JP
    Biomaterials; 2018 Sep; 178():11-22. PubMed ID: 29902533
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Time-dependent cellular morphogenesis and matrix stiffening in proteolytically responsive hydrogels.
    Kesselman D; Kossover O; Mironi-Harpaz I; Seliktar D
    Acta Biomater; 2013 Aug; 9(8):7630-9. PubMed ID: 23624218
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PVA-gelatin hydrogels formed using combined theta-gel and cryo-gel fabrication techniques.
    Charron PN; Braddish TA; Oldinski RA
    J Mech Behav Biomed Mater; 2019 Apr; 92():90-96. PubMed ID: 30665114
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrodynamic determinants of cell necrosis and molecular delivery produced by pulsed laser microbeam irradiation of adherent cells.
    Compton JL; Hellman AN; Venugopalan V
    Biophys J; 2013 Nov; 105(9):2221-31. PubMed ID: 24209868
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of mechanical and hydraulic properties of PVA hydrogels.
    Kazimierska-Drobny K; El Fray M; Kaczmarek M
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():48-54. PubMed ID: 25579895
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterizing viscoelastic mechanical properties of highly compliant polymers and biological tissues using impact indentation.
    Mijailovic AS; Qing B; Fortunato D; Van Vliet KJ
    Acta Biomater; 2018 Apr; 71():388-397. PubMed ID: 29477455
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses.
    Vogel A; Busch S; Jungnickel K; Birngruber R
    Lasers Surg Med; 1994; 15(1):32-43. PubMed ID: 7997046
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel method to determine the elastic modulus of extremely soft materials.
    Stirling T; Zrínyi M
    Soft Matter; 2015 Jun; 11(21):4180-8. PubMed ID: 25873419
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rheological properties and failure of alginate hydrogels with ionic and covalent crosslinks.
    Hashemnejad SM; Kundu S
    Soft Matter; 2019 Oct; 15(39):7852-7862. PubMed ID: 31531488
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Novel Toolkit for Characterizing the Mechanical and Electrical Properties of Engineered Neural Tissues.
    Robinson M; Valente KP; Willerth SM
    Biosensors (Basel); 2019 Apr; 9(2):. PubMed ID: 30939804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.