These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 32754636)

  • 1. Meteorite evidence for partial differentiation and protracted accretion of planetesimals.
    Maurel C; Bryson JFJ; Lyons RJ; Ball MR; Chopdekar RV; Scholl A; Ciesla FJ; Bottke WF; Weiss BP
    Sci Adv; 2020 Jul; 6(30):eaba1303. PubMed ID: 32754636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recurrent planetesimal formation in an outer part of the early solar system.
    Neumann W; Ma N; Bouvier A; Trieloff M
    Sci Rep; 2024 Jul; 14(1):14017. PubMed ID: 38951135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accretion timescales and style of asteroidal differentiation in an
    Larsen KK; Schiller M; Bizzarro M
    Geochim Cosmochim Acta; 2016 Mar; 176():295-315. PubMed ID: 27445415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early volatile depletion on planetesimals inferred from C-S systematics of iron meteorite parent bodies.
    Hirschmann MM; Bergin EA; Blake GA; Ciesla FJ; Li J
    Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33753516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accretion and differentiation of carbon in the early Earth.
    Tingle TN
    Chem Geol; 1998 May; 147(1-2):3-10. PubMed ID: 11543125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron meteorite evidence for early formation and catastrophic disruption of protoplanets.
    Yang J; Goldstein JI; Scott ER
    Nature; 2007 Apr; 446(7138):888-91. PubMed ID: 17443181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron meteorites as remnants of planetesimals formed in the terrestrial planet region.
    Bottke WF; Nesvorný D; Grimm RE; Morbidelli A; O'Brien DP
    Nature; 2006 Feb; 439(7078):821-4. PubMed ID: 16482151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy iron isotope composition of iron meteorites explained by core crystallization.
    Ni P; Chabot NL; Ryan CJ; Shahar A
    Nat Geosci; 2020 Sep; 13(9):611-615. PubMed ID: 32952605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early planetesimal melting from an age of 4.5662 Gyr for differentiated meteorites.
    Baker J; Bizzarro M; Wittig N; Connelly J; Haack H
    Nature; 2005 Aug; 436(7054):1127-31. PubMed ID: 16121173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of an unmelted h-chondrite inclusion in an iron meteorite.
    Casanova I; Graf T; Marti K
    Science; 1995 Apr; 268(5210):540-2. PubMed ID: 17756721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion.
    Johansen A; Low MM; Lacerda P; Bizzarro M
    Sci Adv; 2015 Apr; 1(3):e1500109. PubMed ID: 26601169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accretion of a large LL parent planetesimal from a recently formed chondrule population.
    Edwards GH; Blackburn T
    Sci Adv; 2020 Apr; 6(16):eaay8641. PubMed ID: 32494606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry.
    Trieloff M; Jessberger EK; Herrwerth I; Hopp J; Fiéni C; Ghélis M; Bourot-Denise M; Pellas P
    Nature; 2003 Apr; 422(6931):502-6. PubMed ID: 12673245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early silica crust formation in planetesimals by metastable silica-rich liquid immiscibility or cristobalite crystallisation: the possible origin of silica-rich chondrules.
    Faure F
    Sci Rep; 2020 Mar; 10(1):4765. PubMed ID: 32179811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Earth's composition was modified by collisional erosion.
    Frossard P; Israel C; Bouvier A; Boyet M
    Science; 2022 Sep; 377(6614):1529-1532. PubMed ID: 36173863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alkali magmatism on a carbonaceous chondrite planetesimal.
    Aléon J; Aléon-Toppani A; Platevoet B; Bardintzeff JM; McKeegan KD; Brisset F
    Proc Natl Acad Sci U S A; 2020 Apr; 117(15):8353-8359. PubMed ID: 32229558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stochastic accretion of the Earth.
    Sossi PA; Stotz IL; Jacobson SA; Morbidelli A; O'Neill HSC
    Nat Astron; 2022 Jul; 6(8):951-960. PubMed ID: 35971330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Late accretion on the earliest planetesimals revealed by the highly siderophile elements.
    Dale CW; Burton KW; Greenwood RC; Gannoun A; Wade J; Wood BJ; Pearson DG
    Science; 2012 Apr; 336(6077):72-5. PubMed ID: 22491852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 4,565-My-old andesite from an extinct chondritic protoplanet.
    Barrat JA; Chaussidon M; Yamaguchi A; Beck P; Villeneuve J; Byrne DJ; Broadley MW; Marty B
    Proc Natl Acad Sci U S A; 2021 Mar; 118(11):. PubMed ID: 33836612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron isotope evidence for very rapid accretion and differentiation of the proto-Earth.
    Schiller M; Bizzarro M; Siebert J
    Sci Adv; 2020 Feb; 6(7):eaay7604. PubMed ID: 32095530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.