These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32754987)

  • 41. Basal Sodium-Dependent Vitamin C Transporter 2 polarization in choroid plexus explant cells in normal or scorbutic conditions.
    Ulloa V; Saldivia N; Ferrada L; Salazar K; Martínez F; Silva-Alvarez C; Magdalena R; Oviedo MJ; Montecinos H; Torres-Vergara P; Cifuentes M; Nualart F
    Sci Rep; 2019 Oct; 9(1):14422. PubMed ID: 31594969
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sodium vitamin C transporter 2 orchestrates lactate metabolism in mouse Sertoli cells.
    Gao G; Zhao Y; Wang K; Wang F
    J Mol Endocrinol; 2021 Feb; 66(2):157-170. PubMed ID: 33350980
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Calsyntenin-3 interacts with the sodium-dependent vitamin C transporter-2 to regulate vitamin C uptake.
    Subramanian VS; Teafatiller T; Vidal J; Gunaratne GS; Rodriguez-Ortiz CJ; Kitazawa M; Marchant JS
    Int J Biol Macromol; 2021 Dec; 192():1178-1184. PubMed ID: 34673103
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High-affinity sodium-vitamin C co-transporters (SVCT) expression in embryonic mouse neurons.
    Castro M; Caprile T; Astuya A; Millán C; Reinicke K; Vera JC; Vásquez O; Aguayo LG; Nualart F
    J Neurochem; 2001 Aug; 78(4):815-23. PubMed ID: 11520902
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-dose vitamin C supplementation increases skeletal muscle vitamin C concentration and SVCT2 transporter expression but does not alter redox status in healthy males.
    Mason SA; Baptista R; Della Gatta PA; Yousif A; Russell AP; Wadley GD
    Free Radic Biol Med; 2014 Dec; 77():130-8. PubMed ID: 25242204
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Impaired Replenishment of Cortico-Striatal Synaptic Glutamate in Huntington's Disease Mouse Model.
    Buren C; Tu G; Raymond LA
    J Huntingtons Dis; 2020; 9(2):149-161. PubMed ID: 32310183
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Essential role of intracellular glutathione in controlling ascorbic acid transporter expression and function in rat hepatocytes and hepatoma cells.
    Mardones L; Zúñiga FA; Villagrán M; Sotomayor K; Mendoza P; Escobar D; González M; Ormazabal V; Maldonado M; Oñate G; Angulo C; Concha II; Reyes AM; Cárcamo JG; Barra V; Vera JC; Rivas CI
    Free Radic Biol Med; 2012 May; 52(9):1874-87. PubMed ID: 22348976
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Na+-dependent L-ascorbic acid transporter SVCT2 expressed in brainstem cells, neurons, and neuroblastoma cells is inhibited by flavonoids.
    Caprile T; Salazar K; Astuya A; Cisternas P; Silva-Alvarez C; Montecinos H; Millán C; de Los Angeles García M; Nualart F
    J Neurochem; 2009 Feb; 108(3):563-77. PubMed ID: 19054284
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metabolic dysregulation in Huntington's disease: Neuronal and glial perspectives.
    Chang CP; Wu CW; Chern Y
    Neurobiol Dis; 2024 Oct; 201():106672. PubMed ID: 39306013
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Low vitamin C and increased oxidative stress and cell death in mice that lack the sodium-dependent vitamin C transporter SVCT2.
    Harrison FE; Dawes SM; Meredith ME; Babaev VR; Li L; May JM
    Free Radic Biol Med; 2010 Sep; 49(5):821-9. PubMed ID: 20541602
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transducer of regulated CREB-binding proteins (TORCs) transcription and function is impaired in Huntington's disease.
    Chaturvedi RK; Hennessey T; Johri A; Tiwari SK; Mishra D; Agarwal S; Kim YS; Beal MF
    Hum Mol Genet; 2012 Aug; 21(15):3474-88. PubMed ID: 22589249
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Liver metabolic/oxidative stress induces hepatic and extrahepatic changes in the expression of the vitamin C transporters SVCT1 and SVCT2.
    Hierro C; Monte MJ; Lozano E; Gonzalez-Sanchez E; Marin JJ; Macias RI
    Eur J Nutr; 2014; 53(2):401-12. PubMed ID: 23708151
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of intracellular HAP1 trafficking.
    Rong J; Li SH; Li XJ
    J Neurosci Res; 2007 Nov; 85(14):3025-9. PubMed ID: 17474105
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The sodium-dependent ascorbic acid transporter family SLC23.
    Bürzle M; Suzuki Y; Ackermann D; Miyazaki H; Maeda N; Clémençon B; Burrier R; Hediger MA
    Mol Aspects Med; 2013; 34(2-3):436-54. PubMed ID: 23506882
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Protein changes in synaptosomes of Huntington's disease knock-in mice are dependent on age and brain region.
    Sapp E; Seeley C; Iuliano M; Weisman E; Vodicka P; DiFiglia M; Kegel-Gleason KB
    Neurobiol Dis; 2020 Jul; 141():104950. PubMed ID: 32439598
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanistic insights and functional determinants of the transport cycle of the ascorbic acid transporter SVCT2. Activation by sodium and absolute dependence on bivalent cations.
    Godoy A; Ormazabal V; Moraga-Cid G; Zúñiga FA; Sotomayor P; Barra V; Vasquez O; Montecinos V; Mardones L; Guzmán C; Villagrán M; Aguayo LG; Oñate SA; Reyes AM; Cárcamo JG; Rivas CI; Vera JC
    J Biol Chem; 2007 Jan; 282(1):615-24. PubMed ID: 17012227
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Upregulation of Vitamin C Transporter Functional Expression in 5xFAD Mouse Intestine.
    Teafatiller T; Heskett CW; Agrawal A; Marchant JS; Baulch JE; Acharya MM; Subramanian VS
    Nutrients; 2021 Feb; 13(2):. PubMed ID: 33672967
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Oxidative metabolism in YAC128 mouse model of Huntington's disease.
    Hamilton J; Pellman JJ; Brustovetsky T; Harris RA; Brustovetsky N
    Hum Mol Genet; 2015 Sep; 24(17):4862-78. PubMed ID: 26041817
    [TBL] [Abstract][Full Text] [Related]  

  • 59. SVCT2 Expression and Function in Reactive Astrocytes Is a Common Event in Different Brain Pathologies.
    Salazar K; Martínez F; Pérez-Martín M; Cifuentes M; Trigueros L; Ferrada L; Espinoza F; Saldivia N; Bertinat R; Forman K; Oviedo MJ; López-Gambero AJ; Bonansco C; Bongarzone ER; Nualart F
    Mol Neurobiol; 2018 Jul; 55(7):5439-5452. PubMed ID: 28942474
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neural stem cells derived from the developing forebrain of YAC128 mice exhibit pathological features of Huntington's disease.
    Li E; Park HR; Hong CP; Kim Y; Choi J; Lee S; Park HJ; Lee B; Kim TA; Kim SJ; Kim HS; Song J
    Cell Prolif; 2020 Oct; 53(10):e12893. PubMed ID: 32865873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.