BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 32755076)

  • 1. Handheld multispectral imager for quantitative skin assessment in low-resource settings.
    Belcastro L; Jonasson H; Strömberg T; Saager RB
    J Biomed Opt; 2020 Aug; 25(8):1-12. PubMed ID: 32755076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Method using in vivo quantitative spectroscopy to guide design and optimization of low-cost, compact clinical imaging devices: emulation and evaluation of multispectral imaging systems.
    Saager RB; Baldado ML; Rowland RA; Kelly KM; Durkin AJ
    J Biomed Opt; 2018 Apr; 23(4):1-12. PubMed ID: 29633609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial frequency domain imager based on a compact multiaperture camera: testing and feasibility for noninvasive burn severity assessment.
    Kennedy G; Kagawa K; Rowland R; Ponticorvo A; Tanida J; Durkin AJ
    J Biomed Opt; 2021 Aug; 26(8):. PubMed ID: 34387050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OpenSFDI: an open-source guide for constructing a spatial frequency domain imaging system.
    Applegate M; Karrobi K; Angelo J; Austin W; Tabassum S; Aguénounon E; Tilbury K; Saager R; Gioux S; Roblyer D
    J Biomed Opt; 2020 Jan; 25(1):1-13. PubMed ID: 31925946
    [No Abstract]   [Full Text] [Related]  

  • 5. Portable (handheld) clinical device for quantitative spectroscopy of skin, utilizing spatial frequency domain reflectance techniques.
    Saager RB; Dang AN; Huang SS; Kelly KM; Durkin AJ
    Rev Sci Instrum; 2017 Sep; 88(9):094302. PubMed ID: 28964218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperspectral imaging in the spatial frequency domain with a supercontinuum source.
    Torabzadeh M; Stockton P; Kennedy G; Saager R; Durkin AJ; Bartels R; Tromberg B
    J Biomed Opt; 2019 Jul; 24(7):1-9. PubMed ID: 31271005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible spatial frequency domain imaging with a digital light microprojector.
    Lin AJ; Ponticorvo A; Konecky SD; Cui H; Rice TB; Choi B; Durkin AJ; Tromberg BJ
    J Biomed Opt; 2013 Sep; 18(9):096007. PubMed ID: 24005154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shortwave infrared spatial frequency domain imaging for non-invasive measurement of tissue and blood optical properties.
    Pilvar A; Plutzky J; Pierce M; Roblyer D
    J Biomed Opt; 2022 Jun; 27(6):. PubMed ID: 35715883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing reduced scattering coefficient of normal human skin across different anatomic locations and Fitzpatrick skin types using spatial frequency domain imaging.
    Phan T; Rowland R; Ponticorvo A; Le BC; Wilson RH; Sharif SA; Kennedy GT; Bernal N; Durkin AJ
    J Biomed Opt; 2021 Feb; 26(2):. PubMed ID: 33569936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer.
    Weber JR; Cuccia DJ; Johnson WR; Bearman GH; Durkin AJ; Hsu M; Lin A; Binder DK; Wilson D; Tromberg BJ
    J Biomed Opt; 2011; 16(1):011015. PubMed ID: 21280902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying the confounding effect of pigmentation on measured skin tissue optical properties: a comparison of colorimetry with spatial frequency domain imaging.
    Phan T; Rowland R; Ponticorvo A; Le BC; Sharif SA; Kennedy GT; Wilson RH; Durkin AJ
    J Biomed Opt; 2022 Mar; 27(3):. PubMed ID: 35324096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-frequency spatial frequency domain imaging: a depth-resolved optical scattering model to isolate scattering contrast in thin layers of skin.
    Belcastro L; Jonasson H; Saager RB
    J Biomed Opt; 2024 Apr; 29(4):046003. PubMed ID: 38650893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of optical aberrations on depth-specific spatial frequency domain techniques.
    Majedy M; Das N; Johansson J; Saager R
    J Biomed Opt; 2022 Nov; 27(11):. PubMed ID: 36358008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skin chromophore mapping by smartphone RGB camera under spectral band and spectral line illumination.
    Kuzmina I; Oshina I; Dambite L; Lukinsone V; Maslobojeva A; Berzina A; Spigulis J
    J Biomed Opt; 2022 Feb; 27(2):. PubMed ID: 35191236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motion-resistant three-wavelength spatial frequency domain imaging system with ambient light suppression using an 8-tap CMOS image sensor.
    Feng Y; Cao C; Shimada Y; Yasutomi K; Kawahito S; Kennedy GT; Durkin AJ; Kagawa K
    J Biomed Opt; 2024 Jan; 29(1):016006. PubMed ID: 38239389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sampling depth of a diffuse reflectance spectroscopy probe for in-vivo physiological quantification of murine subcutaneous tumor allografts.
    Greening G; Mundo A; Rajaram N; Muldoon TJ
    J Biomed Opt; 2018 Aug; 23(8):1-14. PubMed ID: 30152204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial frequency domain imaging technology based on Fourier single-pixel imaging.
    Ren HM; Deng G; Zhou P; Kang X; Zhang Y; Ni J; Zhang Y; Wang Y
    J Biomed Opt; 2022 Jan; 27(1):. PubMed ID: 35075831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-miniature dual-wavelength spatial frequency domain imaging for micro-endoscopy.
    Crowley J; Gordon GSD
    J Biomed Opt; 2024 Feb; 29(2):026002. PubMed ID: 38312854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nondestructive determination of optical properties of a pear using spatial frequency domain imaging combined with phase-measuring profilometry.
    He X; Fu X; Rao X; Fu F
    Appl Opt; 2017 Oct; 56(29):8207-8215. PubMed ID: 29047685
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.