BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 32755580)

  • 1. In Vivo Estimates of Liver Metabolic Flux Assessed by
    Hasenour CM; Rahim M; Young JD
    Cell Rep; 2020 Aug; 32(5):107986. PubMed ID: 32755580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass spectrometry-based microassay of (2)H and (13)C plasma glucose labeling to quantify liver metabolic fluxes in vivo.
    Hasenour CM; Wall ML; Ridley DE; Hughey CC; James FD; Wasserman DH; Young JD
    Am J Physiol Endocrinol Metab; 2015 Jul; 309(2):E191-203. PubMed ID: 25991647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Propionate Increases Hepatic Pyruvate Cycling and Anaplerosis and Alters Mitochondrial Metabolism.
    Perry RJ; Borders CB; Cline GW; Zhang XM; Alves TC; Petersen KF; Rothman DL; Kibbey RG; Shulman GI
    J Biol Chem; 2016 Jun; 291(23):12161-70. PubMed ID: 27002151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isotopomer studies of gluconeogenesis and the Krebs cycle with 13C-labeled lactate.
    Katz J; Wals P; Lee WN
    J Biol Chem; 1993 Dec; 268(34):25509-21. PubMed ID: 7902352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracer-based assessments of hepatic anaplerotic and TCA cycle flux: practicality, stoichiometry, and hidden assumptions.
    Previs SF; Kelley DE
    Am J Physiol Endocrinol Metab; 2015 Oct; 309(8):E727-35. PubMed ID: 26330343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of gluconeogenesis and pyruvate recycling in the rat liver: a simple analysis of glucose and glutamate isotopomers during metabolism of [1,2,3-(13)C3]propionate.
    Jones JG; Naidoo R; Sherry AD; Jeffrey FM; Cottam GL; Malloy CR
    FEBS Lett; 1997 Jul; 412(1):131-7. PubMed ID: 9257705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon-13 nuclear magnetic resonance study of metabolism of propionate by Escherichia coli.
    London RE; Allen DL; Gabel SA; DeRose EF
    J Bacteriol; 1999 Jun; 181(11):3562-70. PubMed ID: 10348870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The quantitative relationship between isotopic and net contributions of lactate and glucose to the tricarboxylic acid (TCA) cycle.
    Ying M; Guo C; Hu X
    J Biol Chem; 2019 Jun; 294(24):9615-9630. PubMed ID: 31040177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive metabolic modeling of multiple 13C-isotopomer data sets to study metabolism in perfused working hearts.
    Crown SB; Kelleher JK; Rouf R; Muoio DM; Antoniewicz MR
    Am J Physiol Heart Circ Physiol; 2016 Oct; 311(4):H881-H891. PubMed ID: 27496880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 14C-labeled propionate metabolism in vivo and estimates of hepatic gluconeogenesis relative to Krebs cycle flux.
    Landau BR; Schumann WC; Chandramouli V; Magnusson I; Kumaran K; Wahren J
    Am J Physiol; 1993 Oct; 265(4 Pt 1):E636-47. PubMed ID: 8238339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass isotopomer study of anaplerosis from propionate in the perfused rat heart.
    Kasumov T; Cendrowski AV; David F; Jobbins KA; Anderson VE; Brunengraber H
    Arch Biochem Biophys; 2007 Jul; 463(1):110-7. PubMed ID: 17418801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modifications of citric acid cycle activity and gluconeogenesis in streptozotocin-induced diabetes and effects of metformin.
    Large V; Beylot M
    Diabetes; 1999 Jun; 48(6):1251-7. PubMed ID: 10342812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of thermal injury on relative anaplerosis and gluconeogenesis in the rat during infusion of [U-13C] propionate.
    Zhaofan X; Jianguang T; Guangyi W; Hongtai T; Shengde G; Horton JW
    Burns; 2002 Nov; 28(7):625-30. PubMed ID: 12417155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic isotope effects significantly influence intracellular metabolite (13) C labeling patterns and flux determination.
    Wasylenko TM; Stephanopoulos G
    Biotechnol J; 2013 Sep; 8(9):1080-9. PubMed ID: 23828762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrated (2)H and (13)C NMR study of gluconeogenesis and TCA cycle flux in humans.
    Jones JG; Solomon MA; Cole SM; Sherry AD; Malloy CR
    Am J Physiol Endocrinol Metab; 2001 Oct; 281(4):E848-56. PubMed ID: 11551863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous tracers and a unified model of positional and mass isotopomers for quantification of metabolic flux in liver.
    Deja S; Fu X; Fletcher JA; Kucejova B; Browning JD; Young JD; Burgess SC
    Metab Eng; 2020 May; 59():1-14. PubMed ID: 31891762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Propionate-induced changes in cardiac metabolism, notably CoA trapping, are not altered by l-carnitine.
    Wang Y; Christopher BA; Wilson KA; Muoio D; McGarrah RW; Brunengraber H; Zhang GF
    Am J Physiol Endocrinol Metab; 2018 Oct; 315(4):E622-E633. PubMed ID: 30016154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of acute stress on murine metabolomics and metabolic flux.
    Lee WD; Liang L; AbuSalim J; Jankowski CSR; Samarah LZ; Neinast MD; Rabinowitz JD
    Proc Natl Acad Sci U S A; 2023 May; 120(21):e2301215120. PubMed ID: 37186827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hepatic gluconeogenesis and Krebs cycle fluxes in a CCl4 model of acute liver failure.
    Carvalho RA; Jones JG; McGuirk C; Sherry AD; Malloy CR
    NMR Biomed; 2002 Feb; 15(1):45-51. PubMed ID: 11840552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peroxisome proliferator-activated receptor alpha (PPARalpha) influences substrate utilization for hepatic glucose production.
    Xu J; Xiao G; Trujillo C; Chang V; Blanco L; Joseph SB; Bassilian S; Saad MF; Tontonoz P; Lee WN; Kurland IJ
    J Biol Chem; 2002 Dec; 277(52):50237-44. PubMed ID: 12176975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.