These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 32755609)
41. Contribution of noradrenergic and adrenergic cell groups of the brainstem and agouti-related protein-synthesizing neurons of the arcuate nucleus to neuropeptide-y innervation of corticotropin-releasing hormone neurons in hypothalamic paraventricular nucleus of the rat. Füzesi T; Wittmann G; Liposits Z; Lechan RM; Fekete C Endocrinology; 2007 Nov; 148(11):5442-50. PubMed ID: 17690163 [TBL] [Abstract][Full Text] [Related]
42. Leptin-receptor gene transfer into the arcuate nucleus of female Fatty zucker rats using recombinant adeno-associated viral vectors stimulates the hypothalamo-pituitary-gonadal axis. Keen-Rhinehart E; Kalra SP; Kalra PS Biol Reprod; 2004 Jul; 71(1):266-72. PubMed ID: 14998906 [TBL] [Abstract][Full Text] [Related]
43. Ontogeny of hypothalamic glucocorticoid receptor-mediated inhibition of the hypothalamic-pituitary-adrenal axis in mice. Laryea G; Arnett M; Muglia LJ Stress; 2015; 18(4):400-7. PubMed ID: 26068518 [TBL] [Abstract][Full Text] [Related]
44. Effect of fasting and leptin deficiency on hypothalamic neuropeptide Y gene transcription in vivo revealed by expression of a lacZ reporter gene. Schwartz MW; Erickson JC; Baskin DG; Palmiter RD Endocrinology; 1998 May; 139(5):2629-35. PubMed ID: 9564880 [TBL] [Abstract][Full Text] [Related]
45. The effects of high fat diet on the basal activity of the hypothalamus-pituitary-adrenal axis in mice. Auvinen HE; Romijn JA; Biermasz NR; Pijl H; Havekes LM; Smit JW; Rensen PC; Pereira AM J Endocrinol; 2012 Aug; 214(2):191-7. PubMed ID: 22619233 [TBL] [Abstract][Full Text] [Related]
48. Long-Term Energy Deficit in Mice Causes Long-Lasting Hypothalamic Alterations after Recovery. Méquinion M; Le Thuc O; Zgheib S; Alexandre D; Chartrel N; Rovère C; Hardouin P; Viltart O; Chauveau C Neuroendocrinology; 2017; 105(4):372-383. PubMed ID: 28006784 [TBL] [Abstract][Full Text] [Related]
49. Characterization of central and peripheral components of the hypothalamus-pituitary-adrenal axis in the inbred Roman rat strains. Carrasco J; Márquez C; Nadal R; Tobeña A; Fernández-Teruel A; Armario A Psychoneuroendocrinology; 2008 May; 33(4):437-45. PubMed ID: 18276081 [TBL] [Abstract][Full Text] [Related]
50. Fetal alcohol exposure alters proopiomelanocortin gene expression and hypothalamic-pituitary-adrenal axis function via increasing MeCP2 expression in the hypothalamus. Gangisetty O; Bekdash R; Maglakelidze G; Sarkar DK PLoS One; 2014; 9(11):e113228. PubMed ID: 25409090 [TBL] [Abstract][Full Text] [Related]
51. Expression analysis of hypothalamic and pituitary components of the growth hormone axis in fasted and streptozotocin-treated neuropeptide Y (NPY)-intact (NPY+/+) and NPY-knockout (NPY-/-) mice. Park S; Peng XD; Frohman LA; Kineman RD Neuroendocrinology; 2005; 81(6):360-71. PubMed ID: 16244497 [TBL] [Abstract][Full Text] [Related]
52. Differential effects of central leptin, insulin, or glucose administration during fasting on the hypothalamic-pituitary-thyroid axis and feeding-related neurons in the arcuate nucleus. Fekete C; Singru PS; Sanchez E; Sarkar S; Christoffolete MA; Riberio RS; Rand WM; Emerson CH; Bianco AC; Lechan RM Endocrinology; 2006 Jan; 147(1):520-9. PubMed ID: 16210367 [TBL] [Abstract][Full Text] [Related]
53. Postnatal development of the hypothalamic neuropeptide Y system. Grove KL; Allen S; Grayson BE; Smith MS Neuroscience; 2003; 116(2):393-406. PubMed ID: 12559095 [TBL] [Abstract][Full Text] [Related]
54. Evidence for the existence of distinct central appetite, energy expenditure, and ghrelin stimulation pathways as revealed by hypothalamic site-specific leptin gene therapy. Bagnasco M; Dube MG; Kalra PS; Kalra SP Endocrinology; 2002 Nov; 143(11):4409-21. PubMed ID: 12399438 [TBL] [Abstract][Full Text] [Related]
55. Corticotropin-releasing factor overexpression in mice abrogates sex differences in body weight, visceral fat, and food intake response to a fast and alters levels of feeding regulatory hormones. Wang L; Goebel-Stengel M; Yuan PQ; Stengel A; Taché Y Biol Sex Differ; 2017; 8():2. PubMed ID: 28101317 [TBL] [Abstract][Full Text] [Related]
56. Effects of neuromedin U-8 on stress responsiveness and hypothalamus-pituitary-adrenal axis activity in male C57BL/6J mice. De Prins A; Allaoui W; Medrano M; Van Eeckhaut A; Ballet S; Smolders I; De Bundel D Horm Behav; 2020 May; 121():104666. PubMed ID: 31899262 [TBL] [Abstract][Full Text] [Related]
57. Expression of neuropeptide Y and agouti-related peptide in the hypothalamic arcuate nucleus of newborn neurogenin3 null mutant mice. Arai Y; Gradwohl G; Kameda Y Cell Tissue Res; 2010 Apr; 340(1):137-45. PubMed ID: 20127365 [TBL] [Abstract][Full Text] [Related]
58. Increased angiotensin II AT(1) receptor expression in paraventricular nucleus and hypothalamic-pituitary-adrenal axis stimulation in AT(2) receptor gene disrupted mice. Armando I; Terrón JA; Falcón-Neri A; Takeshi I; Häuser W; Inagami T; Saavedra JM Neuroendocrinology; 2002 Sep; 76(3):137-47. PubMed ID: 12218346 [TBL] [Abstract][Full Text] [Related]
59. Sex-Biased Physiological Roles of NPFF1R, the Canonical Receptor of RFRP-3, in Food Intake and Metabolic Homeostasis Revealed by its Congenital Ablation in mice. Leon S; Velasco I; Vázquez MJ; Barroso A; Beiroa D; Heras V; Ruiz-Pino F; Manfredi-Lozano M; Romero-Ruiz A; Sanchez-Garrido MA; Dieguez C; Pinilla L; Roa J; Nogueiras R; Tena-Sempere M Metabolism; 2018 Oct; 87():87-97. PubMed ID: 30075164 [TBL] [Abstract][Full Text] [Related]
60. Estrogen-induced mu-opioid receptor internalization in the medial preoptic nucleus is mediated via neuropeptide Y-Y1 receptor activation in the arcuate nucleus of female rats. Mills RH; Sohn RK; Micevych PE J Neurosci; 2004 Jan; 24(4):947-55. PubMed ID: 14749439 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]