These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 32755854)
41. Deep Residual Learning for Accelerated MRI Using Magnitude and Phase Networks. Lee D; Yoo J; Tak S; Ye JC IEEE Trans Biomed Eng; 2018 Sep; 65(9):1985-1995. PubMed ID: 29993390 [TBL] [Abstract][Full Text] [Related]
42. Accelerating T Meng Z; Guo R; Li Y; Guan Y; Wang T; Zhao Y; Sutton B; Li Y; Liang ZP Magn Reson Med; 2021 Mar; 85(3):1455-1467. PubMed ID: 32989816 [TBL] [Abstract][Full Text] [Related]
43. Parallel non-Cartesian spatial-temporal dictionary learning neural networks (stDLNN) for accelerating 4D-MRI. Wang Z; She H; Zhang Y; Du YP Med Image Anal; 2023 Feb; 84():102701. PubMed ID: 36470148 [TBL] [Abstract][Full Text] [Related]
44. Incorporating prior knowledge via volumetric deep residual network to optimize the reconstruction of sparsely sampled MRI. Wu Y; Ma Y; Capaldi DP; Liu J; Zhao W; Du J; Xing L Magn Reson Imaging; 2020 Feb; 66():93-103. PubMed ID: 30880112 [TBL] [Abstract][Full Text] [Related]
45. Deep learning based MRI reconstruction with transformer. Wu Z; Liao W; Yan C; Zhao M; Liu G; Ma N; Li X Comput Methods Programs Biomed; 2023 May; 233():107452. PubMed ID: 36924533 [TBL] [Abstract][Full Text] [Related]
46. Wave-LORAKS: Combining wave encoding with structured low-rank matrix modeling for more highly accelerated 3D imaging. Kim TH; Bilgic B; Polak D; Setsompop K; Haldar JP Magn Reson Med; 2019 Mar; 81(3):1620-1633. PubMed ID: 30252157 [TBL] [Abstract][Full Text] [Related]
47. K-space and image domain collaborative energy-based model for parallel MRI reconstruction. Tu Z; Jiang C; Guan Y; Liu J; Liu Q Magn Reson Imaging; 2023 Jun; 99():110-122. PubMed ID: 36796460 [TBL] [Abstract][Full Text] [Related]
48. A Stacked Generalization U-shape network based on zoom strategy and its application in biomedical image segmentation. Shi T; Jiang H; Zheng B Comput Methods Programs Biomed; 2020 Dec; 197():105678. PubMed ID: 32791449 [TBL] [Abstract][Full Text] [Related]
49. Blind compressive sensing dynamic MRI. Lingala SG; Jacob M IEEE Trans Med Imaging; 2013 Jun; 32(6):1132-45. PubMed ID: 23542951 [TBL] [Abstract][Full Text] [Related]
50. Fourier ptychographic microscopy with untrained deep neural network priors. Chen Q; Huang D; Chen R Opt Express; 2022 Oct; 30(22):39597-39612. PubMed ID: 36298907 [TBL] [Abstract][Full Text] [Related]
51. Deep learning based multiplexed sensitivity-encoding (DL-MUSE) for high-resolution multi-shot DWI. Zhang H; Wang C; Chen W; Wang F; Yang Z; Xu S; Wang H Neuroimage; 2021 Dec; 244():118632. PubMed ID: 34627977 [TBL] [Abstract][Full Text] [Related]
52. K-UNN: k-space interpolation with untrained neural network. Cui ZX; Jia S; Cao C; Zhu Q; Liu C; Qiu Z; Liu Y; Cheng J; Wang H; Zhu Y; Liang D Med Image Anal; 2023 Aug; 88():102877. PubMed ID: 37399681 [TBL] [Abstract][Full Text] [Related]
53. Adaptive convolutional neural networks for accelerating magnetic resonance imaging via k-space data interpolation. Du T; Zhang H; Li Y; Pickup S; Rosen M; Zhou R; Song HK; Fan Y Med Image Anal; 2021 Aug; 72():102098. PubMed ID: 34091426 [TBL] [Abstract][Full Text] [Related]
54. Two-step training deep learning framework for computational imaging without physics priors. Shang R; Hoffer-Hawlik K; Wang F; Situ G; Luke GP Opt Express; 2021 May; 29(10):15239-15254. PubMed ID: 33985227 [TBL] [Abstract][Full Text] [Related]
55. Generation of PET Attenuation Map for Whole-Body Time-of-Flight Hwang D; Kang SK; Kim KY; Seo S; Paeng JC; Lee DS; Lee JS J Nucl Med; 2019 Aug; 60(8):1183-1189. PubMed ID: 30683763 [TBL] [Abstract][Full Text] [Related]
57. MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks. Zhang Q; Ruan G; Yang W; Liu Y; Zhao K; Feng Q; Chen W; Wu EX; Feng Y Magn Reson Med; 2019 Dec; 82(6):2133-2145. PubMed ID: 31373061 [TBL] [Abstract][Full Text] [Related]
58. An unsupervised deep learning method for multi-coil cine MRI. Ke Z; Cheng J; Ying L; Zheng H; Zhu Y; Liang D Phys Med Biol; 2020 Dec; 65(23):235041. PubMed ID: 33263316 [TBL] [Abstract][Full Text] [Related]
59. An optimal control framework for joint-channel parallel MRI reconstruction without coil sensitivities. Bian W; Chen Y; Ye X Magn Reson Imaging; 2022 Jun; 89():1-11. PubMed ID: 35122984 [TBL] [Abstract][Full Text] [Related]
60. [A multi-channel input convolutional neural network for artifact reduction in quantitative susceptibility mapping]. Si W; Feng Y Nan Fang Yi Ke Da Xue Xue Bao; 2022 Dec; 42(12):1799-1806. PubMed ID: 36651247 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]