BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 32755867)

  • 1. A Survey of Stochastic Computing Neural Networks for Machine Learning Applications.
    Liu Y; Liu S; Wang Y; Lombardi F; Han J
    IEEE Trans Neural Netw Learn Syst; 2021 Jul; 32(7):2809-2824. PubMed ID: 32755867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ensemble learning of diffractive optical networks.
    Rahman MSS; Li J; Mengu D; Rivenson Y; Ozcan A
    Light Sci Appl; 2021 Jan; 10(1):14. PubMed ID: 33431804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cost-effective stochastic MAC circuits for deep neural networks.
    Sim H; Lee J
    Neural Netw; 2019 Sep; 117():152-162. PubMed ID: 31170575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bitstream-Based Neural Network for Scalable, Efficient, and Accurate Deep Learning Hardware.
    Sim H; Lee J
    Front Neurosci; 2020; 14():543472. PubMed ID: 33424530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Overview of Machine Learning within Embedded and Mobile Devices-Optimizations and Applications.
    Ajani TS; Imoize AL; Atayero AA
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34203119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully Parallel Stochastic Computing Hardware Implementation of Convolutional Neural Networks for Edge Computing Applications.
    Frasser CF; Linares-Serrano P; de Rios IDL; Moran A; Skibinsky-Gitlin ES; Font-Rossello J; Canals V; Roca M; Serrano-Gotarredona T; Rossello JL
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; 34(12):10408-10418. PubMed ID: 35452392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The deep arbitrary polynomial chaos neural network or how Deep Artificial Neural Networks could benefit from data-driven homogeneous chaos theory.
    Oladyshkin S; Praditia T; Kroeker I; Mohammadi F; Nowak W; Otte S
    Neural Netw; 2023 Sep; 166():85-104. PubMed ID: 37480771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Power and Area Efficient CMOS Stochastic Neuron for Neural Networks Employing Resistive Crossbar Array.
    Yeo I; Chu M; Lee BG
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1678-1689. PubMed ID: 31603798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Memristors for Neuromorphic Circuits and Artificial Intelligence Applications.
    Miranda E; Suñé J
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic computing in convolutional neural network implementation: a review.
    Lee YY; Abdul Halim Z
    PeerJ Comput Sci; 2020; 6():e309. PubMed ID: 33816960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time multi-task diffractive deep neural networks via hardware-software co-design.
    Li Y; Chen R; Sensale-Rodriguez B; Gao W; Yu C
    Sci Rep; 2021 May; 11(1):11013. PubMed ID: 34040045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Diffractive Optical Neural Networks and Their Integration with Electronic Neural Networks.
    Mengu D; Luo Y; Rivenson Y; Ozcan A
    IEEE J Sel Top Quantum Electron; 2020; 26(1):. PubMed ID: 33223801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence.
    Abderrahmane N; Lemaire E; Miramond B
    Neural Netw; 2020 Jan; 121():366-386. PubMed ID: 31593842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beyond multilayer perceptrons: Investigating complex topologies in neural networks.
    Boccato T; Ferrante M; Duggento A; Toschi N
    Neural Netw; 2024 Mar; 171():215-228. PubMed ID: 38096650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compact Hardware Synthesis of Stochastic Spiking Neural Networks.
    Galán-Prado F; Morán A; Font J; Roca M; Rosselló JL
    Int J Neural Syst; 2019 Oct; 29(8):1950004. PubMed ID: 30880526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform.
    Patiño-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B
    Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DEBI-NN: Distance-encoding biomorphic-informational neural networks for minimizing the number of trainable parameters.
    Papp L; Haberl D; Ecsedi B; Spielvogel CP; Krajnc D; Grahovac M; Moradi S; Drexler W
    Neural Netw; 2023 Oct; 167():517-532. PubMed ID: 37690213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Gradient-Guided Evolutionary Approach to Training Deep Neural Networks.
    Yang S; Tian Y; He C; Zhang X; Tan KC; Jin Y
    IEEE Trans Neural Netw Learn Syst; 2022 Sep; 33(9):4861-4875. PubMed ID: 33661739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale's 18th problem.
    Colbrook MJ; Antun V; Hansen AC
    Proc Natl Acad Sci U S A; 2022 Mar; 119(12):e2107151119. PubMed ID: 35294283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Energy-Efficient Bayesian Neural Network Implementation Using Stochastic Computing Method.
    Jia X; Gu H; Liu Y; Yang J; Wang X; Pan W; Zhang Y; Cotofana S; Zhao W
    IEEE Trans Neural Netw Learn Syst; 2023 May; PP():. PubMed ID: 37134041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.