These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 32756021)
1. Prediction of the Ki-67 marker index in hepatocellular carcinoma based on CT radiomics features. Wu H; Han X; Wang Z; Mo L; Liu W; Guo Y; Wei X; Jiang X Phys Med Biol; 2020 Dec; 65(23):235048. PubMed ID: 32756021 [TBL] [Abstract][Full Text] [Related]
2. Radiomic analysis of Gd-EOB-DTPA-enhanced MRI predicts Ki-67 expression in hepatocellular carcinoma. Fan Y; Yu Y; Wang X; Hu M; Hu C BMC Med Imaging; 2021 Jun; 21(1):100. PubMed ID: 34130644 [TBL] [Abstract][Full Text] [Related]
3. Added value of CE-CT radiomics to predict high Ki-67 expression in hepatocellular carcinoma. Zhao YM; Xie SS; Wang J; Zhang YM; Li WC; Ye ZX; Shen W BMC Med Imaging; 2023 Sep; 23(1):138. PubMed ID: 37737166 [TBL] [Abstract][Full Text] [Related]
4. CT-based radiomics signature: a potential biomarker for preoperative prediction of early recurrence in hepatocellular carcinoma. Zhou Y; He L; Huang Y; Chen S; Wu P; Ye W; Liu Z; Liang C Abdom Radiol (NY); 2017 Jun; 42(6):1695-1704. PubMed ID: 28180924 [TBL] [Abstract][Full Text] [Related]
5. Predicting Survival Using Pretreatment CT for Patients With Hepatocellular Carcinoma Treated With Transarterial Chemoembolization: Comparison of Models Using Radiomics. Kim J; Choi SJ; Lee SH; Lee HY; Park H AJR Am J Roentgenol; 2018 Nov; 211(5):1026-1034. PubMed ID: 30240304 [TBL] [Abstract][Full Text] [Related]
6. Application of CT radiomics in prediction of early recurrence in hepatocellular carcinoma. Ning P; Gao F; Hai J; Wu M; Chen J; Zhu S; Wang M; Shi D Abdom Radiol (NY); 2020 Jan; 45(1):64-72. PubMed ID: 31486869 [TBL] [Abstract][Full Text] [Related]
7. Radiomics signatures based on contrast-enhanced CT for preoperative prediction of the Ki-67 proliferation state in gastrointestinal stromal tumors. Liu M; Bian J Jpn J Radiol; 2023 Jul; 41(7):741-751. PubMed ID: 36652141 [TBL] [Abstract][Full Text] [Related]
8. Machine learning-based radiomics strategy for prediction of cell proliferation in non-small cell lung cancer. Gu Q; Feng Z; Liang Q; Li M; Deng J; Ma M; Wang W; Liu J; Liu P; Rong P Eur J Radiol; 2019 Sep; 118():32-37. PubMed ID: 31439255 [TBL] [Abstract][Full Text] [Related]
9. A radiomics nomogram for preoperative prediction of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma. Peng J; Zhang J; Zhang Q; Xu Y; Zhou J; Liu L Diagn Interv Radiol; 2018; 24(3):121-127. PubMed ID: 29770763 [TBL] [Abstract][Full Text] [Related]
10. Correlations between P53 Mutation Status and Texture Features of CT Images for Hepatocellular Carcinoma. Wu H; Chen X; Chen J; Luo Y; Jiang X; Wei X; Tang W; Liu Y; Liang Y; Liu W; Guo Y Methods Inf Med; 2019 Jun; 58(1):42-49. PubMed ID: 31163452 [TBL] [Abstract][Full Text] [Related]
11. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. Xu X; Zhang HL; Liu QP; Sun SW; Zhang J; Zhu FP; Yang G; Yan X; Zhang YD; Liu XS J Hepatol; 2019 Jun; 70(6):1133-1144. PubMed ID: 30876945 [TBL] [Abstract][Full Text] [Related]
13. [Value of the application of enhanced CT radiomics and machine learning in preoperative prediction of microvascular invasion in hepatocellular carcinoma]. Yu YX; Hu CH; Wang XM; Fan YF; Hu MJ; Shi C; Hu S; Zhu M; Zhang Y Zhonghua Yi Xue Za Zhi; 2021 May; 101(17):1239-1245. PubMed ID: 34865392 [No Abstract] [Full Text] [Related]
14. [Correlation analysis of dynamic enhanced energy spectrum CT parameters with Ki-67 high expression in hepatocellular carcinoma]. Li CY; Lin Y; Ding X; Zhang P; Liao LZ; Yue X Zhonghua Yi Xue Za Zhi; 2023 Dec; 103(47):3835-3841. PubMed ID: 38123225 [No Abstract] [Full Text] [Related]
15. Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules. Mokrane FZ; Lu L; Vavasseur A; Otal P; Peron JM; Luk L; Yang H; Ammari S; Saenger Y; Rousseau H; Zhao B; Schwartz LH; Dercle L Eur Radiol; 2020 Jan; 30(1):558-570. PubMed ID: 31444598 [TBL] [Abstract][Full Text] [Related]
16. Preoperative prediction for pathological grade of hepatocellular carcinoma via machine learning-based radiomics. Mao B; Zhang L; Ning P; Ding F; Wu F; Lu G; Geng Y; Ma J Eur Radiol; 2020 Dec; 30(12):6924-6932. PubMed ID: 32696256 [TBL] [Abstract][Full Text] [Related]
17. Radiomics signature: A potential biomarker for β-arrestin1 phosphorylation prediction in hepatocellular carcinoma. Che F; Xu Q; Li Q; Huang ZX; Yang CW; Wang LY; Wei Y; Shi YJ; Song B World J Gastroenterol; 2022 Apr; 28(14):1479-1493. PubMed ID: 35582676 [TBL] [Abstract][Full Text] [Related]
18. A CT-based radiomics nomogram for differentiation of focal nodular hyperplasia from hepatocellular carcinoma in the non-cirrhotic liver. Nie P; Yang G; Guo J; Chen J; Li X; Ji Q; Wu J; Cui J; Xu W Cancer Imaging; 2020 Feb; 20(1):20. PubMed ID: 32093786 [TBL] [Abstract][Full Text] [Related]
19. An MRI-based Radiomics Classifier for Preoperative Prediction of Ki-67 Status in Breast Cancer. Liang C; Cheng Z; Huang Y; He L; Chen X; Ma Z; Huang X; Liang C; Liu Z Acad Radiol; 2018 Sep; 25(9):1111-1117. PubMed ID: 29428211 [TBL] [Abstract][Full Text] [Related]
20. Radiomics model based on contrast-enhanced computed tomography to predict early recurrence in patients with hepatocellular carcinoma after radical resection. Li SQ; Su LL; Xu TF; Ren LY; Chen DB; Qin WY; Yan XZ; Fan JX; Chen HS; Liao WJ World J Gastroenterol; 2023 Jul; 29(26):4186-4199. PubMed ID: 37475840 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]