These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32756481)

  • 1. PremPRI: Predicting the Effects of Missense Mutations on Protein-RNA Interactions.
    Zhang N; Lu H; Chen Y; Zhu Z; Yang Q; Wang S; Li M
    Int J Mol Sci; 2020 Aug; 21(15):. PubMed ID: 32756481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PremPDI estimates and interprets the effects of missense mutations on protein-DNA interactions.
    Zhang N; Chen Y; Zhao F; Yang Q; Simonetti FL; Li M
    PLoS Comput Biol; 2018 Dec; 14(12):e1006615. PubMed ID: 30533007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic comparison and prediction of the effects of missense mutations on protein-DNA and protein-RNA interactions.
    Jiang Y; Liu HF; Liu R
    PLoS Comput Biol; 2021 Apr; 17(4):e1008951. PubMed ID: 33872313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. mCSM-NA: predicting the effects of mutations on protein-nucleic acids interactions.
    Pires DEV; Ascher DB
    Nucleic Acids Res; 2017 Jul; 45(W1):W241-W246. PubMed ID: 28383703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partner-specific prediction of RNA-binding residues in proteins: A critical assessment.
    Jung Y; El-Manzalawy Y; Dobbs D; Honavar VG
    Proteins; 2019 Mar; 87(3):198-211. PubMed ID: 30536635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting protein-DNA binding free energy change upon missense mutations using modified MM/PBSA approach: SAMPDI webserver.
    Peng Y; Sun L; Jia Z; Li L; Alexov E
    Bioinformatics; 2018 Mar; 34(5):779-786. PubMed ID: 29091991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the Impact of Missense Mutations on Protein-Protein Binding Affinity.
    Li M; Petukh M; Alexov E; Panchenko AR
    J Chem Theory Comput; 2014 Apr; 10(4):1770-1780. PubMed ID: 24803870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations.
    Geng C; Vangone A; Folkers GE; Xue LC; Bonvin AMJJ
    Proteins; 2019 Feb; 87(2):110-119. PubMed ID: 30417935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PCA-MutPred: Prediction of Binding Free Energy Change Upon Missense Mutation in Protein-carbohydrate Complexes.
    Siva Shanmugam NR; Veluraja K; Michael Gromiha M
    J Mol Biol; 2022 Jun; 434(11):167526. PubMed ID: 35662456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Template-Based Modeling of Protein-RNA Interactions.
    Zheng J; Kundrotas PJ; Vakser IA; Liu S
    PLoS Comput Biol; 2016 Sep; 12(9):e1005120. PubMed ID: 27662342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepPPAPredMut: deep ensemble method for predicting the binding affinity change in protein-protein complexes upon mutation.
    Nikam R; Jemimah S; Gromiha MM
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38718170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applying physics-based scoring to calculate free energies of binding for single amino acid mutations in protein-protein complexes.
    Beard H; Cholleti A; Pearlman D; Sherman W; Loving KA
    PLoS One; 2013; 8(12):e82849. PubMed ID: 24340062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. mmCSM-PPI: predicting the effects of multiple point mutations on protein-protein interactions.
    Rodrigues CHM; Pires DEV; Ascher DB
    Nucleic Acids Res; 2021 Jul; 49(W1):W417-W424. PubMed ID: 33893812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PremPS: Predicting the impact of missense mutations on protein stability.
    Chen Y; Lu H; Zhang N; Zhu Z; Wang S; Li M
    PLoS Comput Biol; 2020 Dec; 16(12):e1008543. PubMed ID: 33378330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition.
    Schlundt A; Tants JN; Sattler M
    Methods; 2017 Apr; 118-119():119-136. PubMed ID: 28315749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of software methods for estimating protein-protein relative binding affinities.
    Gonzalez TR; Martin KP; Barnes JE; Patel JS; Ytreberg FM
    PLoS One; 2020; 15(12):e0240573. PubMed ID: 33347442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Approaches to Prioritize Cancer Driver Missense Mutations.
    Zhao F; Zheng L; Goncearenco A; Panchenko AR; Li M
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30037003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the mechanisms of protein interactions: predicting their affinity from unbound tertiary structures.
    Marín-López MA; Planas-Iglesias J; Aguirre-Plans J; Bonet J; Garcia-Garcia J; Fernandez-Fuentes N; Oliva B
    Bioinformatics; 2018 Feb; 34(4):592-598. PubMed ID: 29028891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Computational Approach for the Discovery of Protein-RNA Networks.
    Marchese D; Livi CM; Tartaglia GG
    Methods Mol Biol; 2016; 1358():29-39. PubMed ID: 26463375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blind tests of RNA-protein binding affinity prediction.
    Kappel K; Jarmoskaite I; Vaidyanathan PP; Greenleaf WJ; Herschlag D; Das R
    Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8336-8341. PubMed ID: 30962376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.