These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
334 related articles for article (PubMed ID: 3275660)
21. Gene for yeast glutamine tRNA synthetase encodes a large amino-terminal extension and provides a strong confirmation of the signature sequence for a group of the aminoacyl-tRNA synthetases. Ludmerer SW; Schimmel P J Biol Chem; 1987 Aug; 262(22):10801-6. PubMed ID: 3301841 [TBL] [Abstract][Full Text] [Related]
22. Improvement of substrate recognition in branched-chain aminoacyl-tRNA synthetases from Escherichia coli under conditions of pyrophosphate amplification. Nakatsuka-Mori T; Sato D; Aoki H J Biosci Bioeng; 2022 May; 133(5):436-443. PubMed ID: 35216933 [TBL] [Abstract][Full Text] [Related]
23. Amino acid selectivity in the aminoacylation of coenzyme A and RNA minihelices by aminoacyl-tRNA synthetases. Jakubowski H J Biol Chem; 2000 Nov; 275(45):34845-8. PubMed ID: 10995737 [TBL] [Abstract][Full Text] [Related]
24. Asparaginyl-tRNA synthetase from Escherichia coli has significant sequence homologies with yeast aspartyl-tRNA synthetase. Anselme J; Härtlein M Gene; 1989 Dec; 84(2):481-5. PubMed ID: 2693216 [TBL] [Abstract][Full Text] [Related]
25. The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. Chatton B; Walter P; Ebel JP; Lacroute F; Fasiolo F J Biol Chem; 1988 Jan; 263(1):52-7. PubMed ID: 3275649 [TBL] [Abstract][Full Text] [Related]
26. [Regulation of the biosynthesis of branched aminoacyl tRNA synthetases in Bacillus cereus T]. Raimond J Biochimie; 1980; 62(10):727-32. PubMed ID: 6778511 [TBL] [Abstract][Full Text] [Related]
27. Chloroplastic and cytoplasmic valyl- and leucyl-tRNA synthetases from Euglena gracilis. Comparative study of their structural properties. Colas B; Imbault P; Sarantoglou V; Boulanger Y; Weil JH Biochim Biophys Acta; 1982 Apr; 697(1):71-7. PubMed ID: 6805515 [TBL] [Abstract][Full Text] [Related]
28. Cloning and characterization of the gene for Escherichia coli seryl-tRNA synthetase. Härtlein M; Madern D; Leberman R Nucleic Acids Res; 1987 Feb; 15(3):1005-17. PubMed ID: 3029694 [TBL] [Abstract][Full Text] [Related]
29. Enhanced level and metabolic regulation of methionyl-transfer ribonucleic acid synthetase in different strains of Escherichia coli K-12. Cassio D; Mathien Y; Waller JP J Bacteriol; 1975 Aug; 123(2):580-8. PubMed ID: 1097418 [TBL] [Abstract][Full Text] [Related]
30. Specific sequence homology and three-dimensional structure of an aminoacyl transfer RNA synthetase. Webster T; Tsai H; Kula M; Mackie GA; Schimmel P Science; 1984 Dec; 226(4680):1315-7. PubMed ID: 6390679 [TBL] [Abstract][Full Text] [Related]
31. Alternative pathways for editing non-cognate amino acids by aminoacyl-tRNA synthetases. Jakubowski H; Fersht AR Nucleic Acids Res; 1981 Jul; 9(13):3105-17. PubMed ID: 7024910 [TBL] [Abstract][Full Text] [Related]
32. Mutations in the structural genes of CHO cell histidyl-, valyl-, and leucyl-tRNA synthetases. Ashman CR Somatic Cell Genet; 1978 May; 4(3):299-312. PubMed ID: 694722 [TBL] [Abstract][Full Text] [Related]
33. Structural studies on aminoacyl-tRNA synthetases. A tentative correlation between the subunit size and the occurrence of repeated sequences. Potier S; Robbe-Saul S; Boulanger Y Biochim Biophys Acta; 1980 Jul; 624(1):130-41. PubMed ID: 6996739 [TBL] [Abstract][Full Text] [Related]
34. Isoleucyl-tRNA synthetase of Methanobacterium thermoautotrophicum Marburg. Cloning of the gene, nucleotide sequence, and localization of a base change conferring resistance to pseudomonic acid. Jenal U; Rechsteiner T; Tan PY; Bühlmann E; Meile L; Leisinger T J Biol Chem; 1991 Jun; 266(16):10570-7. PubMed ID: 2037598 [TBL] [Abstract][Full Text] [Related]
35. Thermostable valyl-tRNA, isoleucyl-tRNA and methionyl-tRNA synthetases from an extreme thermophile Thermus thermophilus HB8: protein structure and Zn2+ binding. Kohda D; Yokoyama S; Miyazawa T FEBS Lett; 1984 Aug; 174(1):20-3. PubMed ID: 6468656 [TBL] [Abstract][Full Text] [Related]
36. Valyl-tRNA, isoleucyl-tRNA and tyrosyl-tRNA synthetase from baker's yeast. Substrate specificity with regard to ATP analogs and mechanism of the aminoacylation reaction. Freist W; von der Haar F; Faulhammer H; Cramer F Eur J Biochem; 1976 Jul; 66(3):493-7. PubMed ID: 782885 [TBL] [Abstract][Full Text] [Related]
37. Mechanism of aminoacylation of tRNA. Influence of spermine on the kinetics of aminoacyl-tRNA synthetases by isoleucyl- and valyl-tRNA synthetases from Mycobacterium smegmatis. Natarajan V; Gopinathan KP Biochim Biophys Acta; 1981 Jun; 654(1):94-101. PubMed ID: 6912073 [TBL] [Abstract][Full Text] [Related]
38. cDNA sequence, predicted primary structure, and evolving amphiphilic helix of human aspartyl-tRNA synthetase. Jacobo-Molina A; Peterson R; Yang DC J Biol Chem; 1989 Oct; 264(28):16608-12. PubMed ID: 2674137 [TBL] [Abstract][Full Text] [Related]
39. Yellow lupin (Lupinus luteus) aminoacyl-tRNA synthetases. Isolation and some properties of enzyme-bound valyl adenylate and seryl adenylate. Jakubowski H Biochim Biophys Acta; 1978 Dec; 521(2):584-96. PubMed ID: 32907 [TBL] [Abstract][Full Text] [Related]
40. Three photo-cross-linked complexes of yeast phenylalanine specific transfer ribonucleic acid with aminoacyl transfer ribonucleic acid synthetases. Schoemaker HJ; Budzik GP; Giegé R; Schimmel PR J Biol Chem; 1975 Jun; 250(12):4440-4. PubMed ID: 237899 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]