These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 32756834)
1. Protein, Phytate and Minerals in Grains of Commercial Cowpea Genotypes. GonÇalves FV; Medici LO; Fonseca MPSD; Pimentel C; Gaziola SA; Azevedo RA An Acad Bras Cienc; 2020 Jul; 92(suppl 1):e20180484. PubMed ID: 32756834 [TBL] [Abstract][Full Text] [Related]
2. Agronomic biofortification of cowpea with zinc: Variation in primary metabolism responses and grain nutritional quality among 29 diverse genotypes. Silva VM; Nardeli AJ; Mendes NAC; Rocha MM; Wilson L; Young SD; Broadley MR; White PJ; Reis ARD Plant Physiol Biochem; 2021 May; 162():378-387. PubMed ID: 33735742 [TBL] [Abstract][Full Text] [Related]
3. Application of sodium selenate to cowpea (Vigna unguiculata L.) increases shoot and grain Se partitioning with strong genotypic interactions. Silva VM; Nardeli AJ; Mendes NAC; Alcock TD; Rocha MM; Putti FF; Wilson L; Young SD; Broadley MR; White PJ; Reis ARD J Trace Elem Med Biol; 2021 Sep; 67():126781. PubMed ID: 34015659 [TBL] [Abstract][Full Text] [Related]
4. Cowpea: A low-cost quality protein source for food safety in marginal areas for agriculture. Martins Ferreira W; Rodrigues Lima G; Cabral Macedo D; Freire Júnior M; Pimentel C Saudi J Biol Sci; 2022 Dec; 29(12):103431. PubMed ID: 36106015 [TBL] [Abstract][Full Text] [Related]
5. Understanding G × E Interaction for Nutritional and Antinutritional Factors in a Diverse Panel of Gore PG; Das A; Bhardwaj R; Tripathi K; Pratap A; Dikshit HK; Bhattacharya S; Nair RM; Gupta V Front Plant Sci; 2021; 12():766645. PubMed ID: 34966400 [TBL] [Abstract][Full Text] [Related]
6. Positional variation in grain mineral nutrients within a rice panicle and its relation to phytic acid concentration. Su D; Sultan F; Zhao NC; Lei BT; Wang FB; Pan G; Cheng FM J Zhejiang Univ Sci B; 2014 Nov; 15(11):986-96. PubMed ID: 25367791 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous selection for cowpea (Vigna unguiculata L.) genotypes with adaptability and yield stability using mixed models. Torres FE; Teodoro PE; Rodrigues EV; Santos A; Corrêa AM; Ceccon G Genet Mol Res; 2016 Apr; 15(2):. PubMed ID: 27173301 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the phosphorus and mineral concentrations in bran and abraded kernel fractions of a normal barley (Hordeum vulgare) cultivar versus four low phytic acid isolines. Liu K; Peterson KL; Raboy V J Agric Food Chem; 2007 May; 55(11):4453-60. PubMed ID: 17488089 [TBL] [Abstract][Full Text] [Related]
12. Fermentation of pseudocereals quinoa, canihua, and amaranth to improve mineral accessibility through degradation of phytate. Castro-Alba V; Lazarte CE; Perez-Rea D; Carlsson NG; Almgren A; Bergenståhl B; Granfeldt Y J Sci Food Agric; 2019 Aug; 99(11):5239-5248. PubMed ID: 31062366 [TBL] [Abstract][Full Text] [Related]
13. Diallelic analysis to obtain cowpea (Vigna unguiculata L. Walp.) populations tolerant to water deficit. Rodrigues EV; Damasceno-Silva KJ; Rocha MM; Bastos EA Genet Mol Res; 2016 May; 15(2):. PubMed ID: 27323025 [TBL] [Abstract][Full Text] [Related]
14. Using artificial neural networks to select upright cowpea (Vigna unguiculata) genotypes with high productivity and phenotypic stability. Barroso LM; Teodoro PE; Nascimento M; Torres FE; Nascimento AC; Azevedo CF; Teixeira FR Genet Mol Res; 2016 Nov; 15(4):. PubMed ID: 27820651 [TBL] [Abstract][Full Text] [Related]
15. Accumulation of phytate in vegetable-type soybean genotypes harvested at four developmental stages. Mebrahtu T; Mohamed A; Elmi A Plant Foods Hum Nutr; 1997; 50(3):179-87. PubMed ID: 9373869 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of adaptability and stability for iron, zinc and protein content in cowpea genotypes using GGE biplot approach. Araújo MDS; Aragão WFL; Santos SPD; Freitas TKT; Saraiva VDC; Damasceno-Silva KJ; Dias LADS; Rocha MM Heliyon; 2022 Dec; 8(12):e11832. PubMed ID: 36506391 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of low-phytate corn and barley on broiler chick performance. Jang DA; Fadel JG; Klasing KC; Mireles AJ; Ernst RA; Young KA; Cook A; Raboy V Poult Sci; 2003 Dec; 82(12):1914-24. PubMed ID: 14717549 [TBL] [Abstract][Full Text] [Related]
18. Effects of Genotype and Growth Temperature on the Contents of Tannin, Phytate and In Vitro Iron Availability of Sorghum Grains. Wu G; Johnson SK; Bornman JF; Bennett SJ; Singh V; Simic A; Fang Z PLoS One; 2016; 11(2):e0148712. PubMed ID: 26859483 [TBL] [Abstract][Full Text] [Related]
19. Mineral content of sorghum genotypes and the influence of water stress. Paiva CL; Queiroz VAV; Simeone MLF; Schaffert RE; de Oliveira AC; da Silva CS Food Chem; 2017 Jan; 214():400-405. PubMed ID: 27507491 [TBL] [Abstract][Full Text] [Related]
20. Mineral availability is modified by tannin and phytate content in sorghum flaked breakfast cereals. Wu G; Ashton J; Simic A; Fang Z; Johnson SK Food Res Int; 2018 Jan; 103():509-514. PubMed ID: 29389641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]