These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 32757115)

  • 1. Novel sulphur-oxidizing bacteria consummate sulphur deficiency in oil seed crop.
    Joshi N; Gothalwal R; Singh M; Dave K
    Arch Microbiol; 2021 Jan; 203(1):1-6. PubMed ID: 32757115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbes-mediated sulphur cycling in soil: Impact on soil fertility, crop production and environmental sustainability.
    Chaudhary S; Sindhu SS; Dhanker R; Kumari A
    Microbiol Res; 2023 Jun; 271():127340. PubMed ID: 36889205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity and activity of sulphur-oxidizing bacteria and sulphate-reducing bacteria in landfill cover soils.
    Xia FF; Su Y; Wei XM; He YH; Wu ZC; Ghulam A; He R
    Lett Appl Microbiol; 2014 Jul; 59(1):26-34. PubMed ID: 24576086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deciphering the Potential of Sulphur-Oxidizing Bacteria for Sulphate Production Correlating with pH Change.
    Nandni ; Rani S; Chopra G; Wati L
    Microb Ecol; 2023 Nov; 86(4):2282-2292. PubMed ID: 37178239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of sulfur-oxidizing bacteria isolated from mustard (Brassica juncea L.) rhizosphere having the capability of improving sulfur and nitrogen uptake.
    Chaudhary S; Dhanker R; Singh K; Brar B; Goyal S
    J Appl Microbiol; 2022 Nov; 133(5):2814-2825. PubMed ID: 36260818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Links between sulphur oxidation and sulphur-oxidising bacteria abundance and diversity in soil microcosms based on soxB functional gene analysis.
    Tourna M; Maclean P; Condron L; O'Callaghan M; Wakelin SA
    FEMS Microbiol Ecol; 2014 Jun; 88(3):538-49. PubMed ID: 24646185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils.
    Rashid MI; Mujawar LH; Shahzad T; Almeelbi T; Ismail IM; Oves M
    Microbiol Res; 2016 Feb; 183():26-41. PubMed ID: 26805616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of alkaliphilic, chemolithoautotrophic, sulphur-oxidizing bacteria.
    Sorokin DY; Robertson LA; Kuenen JG
    Antonie Van Leeuwenhoek; 2000 Apr; 77(3):251-62. PubMed ID: 15188891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some factors influencing production of sulphate by oxidation of elemental sulphur and thiosulphate in upper horizons of spruce forest soils.
    Lettl A; Langkramer O; Lochman V
    Folia Microbiol (Praha); 1981; 26(2):158-63. PubMed ID: 6266935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfur oxidizing bacteria in agro ecosystem and its role in plant productivity-a review.
    Ranadev P; Revanna A; Bagyaraj DJ; Shinde AH
    J Appl Microbiol; 2023 Aug; 134(8):. PubMed ID: 37491695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From Elemental Sulfur to Hydrogen Sulfide in Agricultural Soils and Plants.
    Fuentes-Lara LO; Medrano-Macías J; Pérez-Labrada F; Rivas-Martínez EN; García-Enciso EL; González-Morales S; Juárez-Maldonado A; Rincón-Sánchez F; Benavides-Mendoza A
    Molecules; 2019 Jun; 24(12):. PubMed ID: 31248198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulphide oxidation to elemental sulphur in a membrane bioreactor: performance and characterization of the selected microbial sulphur-oxidizing community.
    Vannini C; Munz G; Mori G; Lubello C; Verni F; Petroni G
    Syst Appl Microbiol; 2008 Dec; 31(6-8):461-73. PubMed ID: 18814984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives.
    Meena M; Swapnil P; Divyanshu K; Kumar S; Harish ; Tripathi YN; Zehra A; Marwal A; Upadhyay RS
    J Basic Microbiol; 2020 Oct; 60(10):828-861. PubMed ID: 32815221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The bacteria of the sulphur cycle.
    Pfennig N; Widdel F
    Philos Trans R Soc Lond B Biol Sci; 1982 Sep; 298(1093):433-41. PubMed ID: 6127734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinoculants: A sustainable approach to maximize the yield of Ethiopian mustard (Brassica carinata L.) under low input of chemical fertilizers.
    Nosheen A; Bano A; Ullah F
    Toxicol Ind Health; 2016 Feb; 32(2):270-7. PubMed ID: 24097367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulphur-oxidizing and sulphate-reducing communities in Brazilian mangrove sediments.
    Varon-Lopez M; Dias AC; Fasanella CC; Durrer A; Melo IS; Kuramae EE; Andreote FD
    Environ Microbiol; 2014 Mar; 16(3):845-55. PubMed ID: 24033859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial N-cycling gene abundance is affected by cover crop specie and development stage in an integrated cropping system.
    Rocha KF; Kuramae EE; Borges BMF; Leite MFA; Rosolem CA
    Arch Microbiol; 2020 Sep; 202(7):2005-2012. PubMed ID: 32436040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) in oil reservoir and biological control of SRB: a review.
    Gao P; Fan K
    Arch Microbiol; 2023 Apr; 205(5):162. PubMed ID: 37010699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen and sulphur relations in effecting yield and quality of cereals and oilseed crops.
    Nad BK; Purakayastha TJ; Singh DV
    ScientificWorldJournal; 2001 Dec; 1 Suppl 2():30-4. PubMed ID: 12805734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of oxidation of inorganic sulphur compounds in upper soil horizons of spruce forests.
    Lettl A; Langkramer O; Lochman V
    Folia Microbiol (Praha); 1981; 26(1):24-8. PubMed ID: 7203284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.