These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 32757235)
1. Are Convolutional Neural Networks Trained on ImageNet Images Wearing Rose-Colored Glasses?: A Quantitative Comparison of ImageNet, Computed Tomographic, Magnetic Resonance, Chest X-Ray, and Point-of-Care Ultrasound Images for Quality. Blaivas L; Blaivas M J Ultrasound Med; 2021 Feb; 40(2):377-383. PubMed ID: 32757235 [TBL] [Abstract][Full Text] [Related]
2. Are All Deep Learning Architectures Alike for Point-of-Care Ultrasound?: Evidence From a Cardiac Image Classification Model Suggests Otherwise. Blaivas M; Blaivas L J Ultrasound Med; 2020 Jun; 39(6):1187-1194. PubMed ID: 31872477 [TBL] [Abstract][Full Text] [Related]
3. Low-dose CT denoising via convolutional neural network with an observer loss function. Han M; Shim H; Baek J Med Phys; 2021 Oct; 48(10):5727-5742. PubMed ID: 34387360 [TBL] [Abstract][Full Text] [Related]
4. MR-based synthetic CT generation using a deep convolutional neural network method. Han X Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624 [TBL] [Abstract][Full Text] [Related]
5. Evaluating medical images using deep convolutional neural networks: A simulated CT phantom image study. Hayashi N; Maruyama T; Sato Y; Watanabe H; Ogura T; Ogura A Technol Health Care; 2020; 28(2):113-120. PubMed ID: 31156187 [TBL] [Abstract][Full Text] [Related]
6. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging. Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353 [TBL] [Abstract][Full Text] [Related]
7. Targeted transfer learning to improve performance in small medical physics datasets. Romero M; Interian Y; Solberg T; Valdes G Med Phys; 2020 Dec; 47(12):6246-6256. PubMed ID: 33007112 [TBL] [Abstract][Full Text] [Related]
8. Deep learning, reusable and problem-based architectures for detection of consolidation on chest X-ray images. Behzadi-Khormouji H; Rostami H; Salehi S; Derakhshande-Rishehri T; Masoumi M; Salemi S; Keshavarz A; Gholamrezanezhad A; Assadi M; Batouli A Comput Methods Programs Biomed; 2020 Mar; 185():105162. PubMed ID: 31715332 [TBL] [Abstract][Full Text] [Related]
9. Improving convolutional neural network learning based on a hierarchical bezier generative model for stenosis detection in X-ray images. Ovalle-Magallanes E; Avina-Cervantes JG; Cruz-Aceves I; Ruiz-Pinales J Comput Methods Programs Biomed; 2022 Jun; 219():106767. PubMed ID: 35364481 [TBL] [Abstract][Full Text] [Related]
10. DIY AI, deep learning network development for automated image classification in a point-of-care ultrasound quality assurance program. Blaivas M; Arntfield R; White M J Am Coll Emerg Physicians Open; 2020 Apr; 1(2):124-131. PubMed ID: 33000024 [TBL] [Abstract][Full Text] [Related]
11. Multi-View Ensemble Convolutional Neural Network to Improve Classification of Pneumonia in Low Contrast Chest X-Ray Images. Ferreira JR; Armando Cardona Cardenas D; Moreno RA; de Fatima de Sa Rebelo M; Krieger JE; Antonio Gutierrez M Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1238-1241. PubMed ID: 33018211 [TBL] [Abstract][Full Text] [Related]
12. Automatic MR image quality evaluation using a Deep CNN: A reference-free method to rate motion artifacts in neuroimaging. Fantini I; Yasuda C; Bento M; Rittner L; Cendes F; Lotufo R Comput Med Imaging Graph; 2021 Jun; 90():101897. PubMed ID: 33770561 [TBL] [Abstract][Full Text] [Related]
13. Improving breast mass classification by shared data with domain transformation using a generative adversarial network. Muramatsu C; Nishio M; Goto T; Oiwa M; Morita T; Yakami M; Kubo T; Togashi K; Fujita H Comput Biol Med; 2020 Apr; 119():103698. PubMed ID: 32339129 [TBL] [Abstract][Full Text] [Related]
14. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs. Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265 [TBL] [Abstract][Full Text] [Related]
15. Computed tomography image reconstruction using stacked U-Net. Mizusawa S; Sei Y; Orihara R; Ohsuga A Comput Med Imaging Graph; 2021 Jun; 90():101920. PubMed ID: 33901918 [TBL] [Abstract][Full Text] [Related]
16. Toward Content Based Image Retrieval with Deep Convolutional Neural Networks. Sklan JE; Plassard AJ; Fabbri D; Landman BA Proc SPIE Int Soc Opt Eng; 2015 Mar; 9417():. PubMed ID: 25914507 [TBL] [Abstract][Full Text] [Related]
17. Application of Super-Resolution Convolutional Neural Network for Enhancing Image Resolution in Chest CT. Umehara K; Ota J; Ishida T J Digit Imaging; 2018 Aug; 31(4):441-450. PubMed ID: 29047035 [TBL] [Abstract][Full Text] [Related]
18. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images. Tong N; Gou S; Yang S; Cao M; Sheng K Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188 [TBL] [Abstract][Full Text] [Related]
19. Enhancing fracture diagnosis in pelvic X-rays by deep convolutional neural network with synthesized images from 3D-CT. Rahman R; Yagi N; Hayashi K; Maruo A; Muratsu H; Kobashi S Sci Rep; 2024 Apr; 14(1):8004. PubMed ID: 38580737 [TBL] [Abstract][Full Text] [Related]
20. Zero-Echo-Time and Dixon Deep Pseudo-CT (ZeDD CT): Direct Generation of Pseudo-CT Images for Pelvic PET/MRI Attenuation Correction Using Deep Convolutional Neural Networks with Multiparametric MRI. Leynes AP; Yang J; Wiesinger F; Kaushik SS; Shanbhag DD; Seo Y; Hope TA; Larson PEZ J Nucl Med; 2018 May; 59(5):852-858. PubMed ID: 29084824 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]