BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32758083)

  • 1. Noninvasive Multielectrode Array for Brain and Spinal Cord Local Field Potential Recordings from Live Zebrafish Larvae.
    Tomasello DL; Sive H
    Zebrafish; 2020 Aug; 17(4):271-277. PubMed ID: 32758083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microarray Noninvasive Neuronal Seizure Recordings from Intact Larval Zebrafish.
    Meyer M; Dhamne SC; LaCoursiere CM; Tambunan D; Poduri A; Rotenberg A
    PLoS One; 2016; 11(6):e0156498. PubMed ID: 27281339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging.
    Schlüßler R; Möllmert S; Abuhattum S; Cojoc G; Müller P; Kim K; Möckel C; Zimmermann C; Czarske J; Guck J
    Biophys J; 2018 Sep; 115(5):911-923. PubMed ID: 30122291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Augmentation of spinal cord glutamatergic synaptic currents in zebrafish primary motoneurons expressing mutant human TARDBP (TDP-43).
    Petel Légaré V; Harji ZA; Rampal CJ; Allard-Chamard X; Rodríguez EC; Armstrong GAB
    Sci Rep; 2019 Jun; 9(1):9122. PubMed ID: 31235725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Episodic swimming in the larval zebrafish is generated by a spatially distributed spinal network with modular functional organization.
    Wiggin TD; Anderson TM; Eian J; Peck JH; Masino MA
    J Neurophysiol; 2012 Aug; 108(3):925-34. PubMed ID: 22572943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural control and modulation of swimming speed in the larval zebrafish.
    Severi KE; Portugues R; Marques JC; O'Malley DM; Orger MB; Engert F
    Neuron; 2014 Aug; 83(3):692-707. PubMed ID: 25066084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locomotor pattern in the adult zebrafish spinal cord in vitro.
    Gabriel JP; Mahmood R; Walter AM; Kyriakatos A; Hauptmann G; Calabrese RL; El Manira A
    J Neurophysiol; 2008 Jan; 99(1):37-48. PubMed ID: 17977928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "In vivo" monitoring of neuronal network activity in zebrafish by two-photon Ca(2+) imaging.
    Brustein E; Marandi N; Kovalchuk Y; Drapeau P; Konnerth A
    Pflugers Arch; 2003 Sep; 446(6):766-73. PubMed ID: 12883893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persistent behavioral effects following early life exposure to retinoic acid or valproic acid in zebrafish.
    Bailey JM; Oliveri AN; Karbhari N; Brooks RA; De La Rocha AJ; Janardhan S; Levin ED
    Neurotoxicology; 2016 Jan; 52():23-33. PubMed ID: 26439099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole-cell patch-clamp recordings from identified spinal neurons in the zebrafish embryo.
    Saint-Amant L; Drapeau P
    Methods Cell Sci; 2003; 25(1-2):59-64. PubMed ID: 14739588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversal of pentylenetetrazole-altered swimming and neural activity-regulated gene expression in zebrafish larvae by valproic acid and valerian extract.
    Torres-Hernández BA; Colón LR; Rosa-Falero C; Torrado A; Miscalichi N; Ortíz JG; González-Sepúlveda L; Pérez-Ríos N; Suárez-Pérez E; Bradsher JN; Behra M
    Psychopharmacology (Berl); 2016 Jul; 233(13):2533-47. PubMed ID: 27165438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local Spinal Cord Circuits and Bilateral Mauthner Cell Activity Function Together to Drive Alternative Startle Behaviors.
    Liu YC; Hale ME
    Curr Biol; 2017 Mar; 27(5):697-704. PubMed ID: 28216316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Human-Induced Pluripotent Stem Cell-Derived Spinal Cord Astrocytes in the Functional Maturation of Motor Neurons in a Multielectrode Array System.
    Taga A; Dastgheyb R; Habela C; Joseph J; Richard JP; Gross SK; Lauria G; Lee G; Haughey N; Maragakis NJ
    Stem Cells Transl Med; 2019 Dec; 8(12):1272-1285. PubMed ID: 31631575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Larval zebrafish model for studying the effects of valproic acid on neurodevelopment: An approach towards modeling autism.
    Dwivedi S; Medishetti R; Rani R; Sevilimedu A; Kulkarni P; Yogeeswari P
    J Pharmacol Toxicol Methods; 2019; 95():56-65. PubMed ID: 30500431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence of consistent intra-individual locomotor patterns during zebrafish development.
    Fitzgerald JA; Kirla KT; Zinner CP; Vom Berg CM
    Sci Rep; 2019 Sep; 9(1):13647. PubMed ID: 31541136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic properties of larval zebrafish neurons in ethanol.
    Ikeda H; Delargy AH; Yokogawa T; Urban JM; Burgess HA; Ono F
    PLoS One; 2013; 8(5):e63318. PubMed ID: 23658822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiological recording in the brain of intact adult zebrafish.
    Johnston L; Ball RE; Acuff S; Gaudet J; Sornborger A; Lauderdale JD
    J Vis Exp; 2013 Nov; (81):e51065. PubMed ID: 24300281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A topographic map of recruitment in spinal cord.
    McLean DL; Fan J; Higashijima S; Hale ME; Fetcho JR
    Nature; 2007 Mar; 446(7131):71-5. PubMed ID: 17330042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinal interneurons differentiate sequentially from those driving the fastest swimming movements in larval zebrafish to those driving the slowest ones.
    McLean DL; Fetcho JR
    J Neurosci; 2009 Oct; 29(43):13566-77. PubMed ID: 19864569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertebrates on a Chip: Noninvasive Electrical and Optical Mapping of Whole Brain Activity Associated with Pharmacological Treatments.
    Liu Z; Luo X; Yan-Do R; Wang Y; Xie X; Li Z; Cheng SH; Shi P
    ACS Chem Neurosci; 2024 Jun; 15(11):2121-2131. PubMed ID: 38775291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.